91 research outputs found

    CHD7 Targets Active Gene Enhancer Elements to Modulate ES Cell-Specific Gene Expression

    Get PDF
    CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation

    Genome remodelling in a basal-like breast cancer metastasis and xenograft

    Get PDF
    Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour

    Extraction of eco-friendly and biodegradable surfactant for inhibition of copper corrosion during acid pickling

    No full text
    A novel, cheap, less toxic, and easier-prepared gelatin surfactant is successfully used as corrosion inhibitor for the corrosion of copper in 0.1 M H 2 SO 4 at the temperature range: 25–55°C. The critical micelle concentration of the surfactant was determined from surface tension measurements. The inhibition efficiency was determined from potentiodynamic polarization and electrochemical impedance spectroscopy techniques. For surfactant acted by adsorption at copper/solution interface, an inhibition efficiency up to 68 was obtained at critical micelle concentration (70 ppm) of surfactant at 35°C. The free energy of adsorption was calculated and discussed. The surface parameters of gelatin surfactant were calculated and correlated to the inhibition efficiency. They were also calculated from its surface tension profile including: critical micelle concentration), maximum surface excess (Γ max ), and minimum surface area (A min ). The thermodynamic of micellization, free energies of micellization (ΔG mic ) and entropy of micellization, was calculated and discussed. The formation of compact and adherent monomolecular adsorbed film on copper substrate was confirmed

    Editorial

    No full text
    • …
    corecore