15 research outputs found

    Quantifying Bar Strength: Morphology Meets Methodology

    Full text link
    A set of objective bar-classification methods have been applied to the Ohio State Bright Spiral Galaxy Survey (Eskridge et al. 2002). Bivariate comparisons between methods show that all methods agree in a statistical sense. Thus the distribution of bar strengths in a sample of galaxies can be robustly determined. There are very substantial outliers in all bivariate comparisons. Examination of the outliers reveals that the scatter in the bivariate comparisons correlates with galaxy morphology. Thus multiple measures of bar strength provide a means of studying the range of physical properties of galaxy bars in an objective statistical sense.Comment: LaTeX with Kluwer style file, 5 pages with 3 embedded figures. edited by Block, D.L., Freeman, K.C., Puerari, I., & Groess,

    New evidence for a massive black hole at the centre of the quiescent galaxy M32

    Full text link
    Massive black holes are thought to reside at the centres of many galaxies, where they power quasars and active galactic nuclei. But most galaxies are quiescent, indicating that any central massive black hole present will be starved of fuel and therefore detectable only through its gravitational influence on the motions of the surrounding stars. M32 is a nearby, quiescent elliptical galaxy in which the presence of a black hole has been suspected; however, the limited resolution of the observational data and the restricted classes of models used to interpret this data have made it difficult to rule out alternative explanations, such as models with an anisotropic stellar velocity distribution and no dark mass or models with a central concentration of dark objects (for example, stellar remnants or brown dwarfs). Here we present high-resolution optical HST spectra of M32, which show that the stellar velocities near the centre of this galaxy exceed those inferred from previous ground-based observations. We use a range of general dynamical models to determine a central dark mass concentration of (3.4 +/- 1.6) x 10^6 solar masses, contained within a region only 0.3 pc across. This leaves a massive black hole as the most plausible explanation of the data, thereby strengthening the view that such black holes exist even in quiescent galaxies.Comment: 8 pages, LaTeX, 3 figures; mpeg animation of the stellar motions in M32 available at http://oposite.stsci.edu/pubinfo/Anim.htm

    Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments

    Full text link
    In the current galaxy formation scenarios, two physical phenomena are invoked to build disk galaxies: hierarchical mergers and more quiescent external gas accretion, coming from intergalactic filaments. Although both are thought to play a role, their relative importance is not known precisely. Here we consider the constraints on these scenarios brought by the observation-deduced star formation history on the one hand, and observed dynamics of galaxies on the other hand: the high frequency of bars and spirals, the high frequency of perturbations such as lopsidedness, warps, or polar rings. All these observations are not easily reproduced in simulations without important gas accretion. N-body simulations taking into account the mass exchange between stars and gas through star formation and feedback, can reproduce the data, only if galaxies double their mass in about 10 Gyr through gas accretion. Warped and polar ring systems are good tracers of this accretion, which occurs from cold gas which has not been virialised in the system's potential. The relative importance of these phenomena are compared between the field and rich clusters. The respective role of mergers and gas accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed. D. Block et al., Kluwe

    Unusual finding of endocervical-like mucinous epithelium in continuity with urothelium in endocervicosis of the urinary bladder

    Get PDF
    Endocervicosis in the urinary bladder is a rare benign condition. We present a case in a 37-year-old woman with classical clinical and pathological features of endocervicosis. The unusual observation of endocervical-like mucinous epithelium in continuity with the urothelium in addition to fully developed endocervicosis prompted immunohistochemical profiling of the case using antibodies to cytokeratins (AE1/AE3, CK19, CK7, CK5/6, CK20), HBME-1, estrogen receptor (ER) and progesterone receptor (PR) to assess the relationship of the surface mucinous and endocervicosis glandular epithelia. The surface mucinous epithelium, urothelium and endocervicosis glands were immunopositive for AE1/AE3, CK7 and CK19 while CK20 was only expressed by few urothelial umbrella cells. The surface mucinous epithelium was CK5/6 and HBME-1 immunonegative but showed presence of ER and PR. This was in contrast to the urothelium's expression of CK5/6 but not ER and PR. In comparison, endocervicosis glands expressed HBME-1, unlike the surface mucinous epithelium. The endocervicosis epithelium also demonstrated the expected presence of ER and PR and CK5/6 immunonegativity. The slightly differing immunohistochemical phenotypes of the surface mucinous and morphologically similar endocervicosis glandular epithelium is interesting and requires further clarification to its actual nature. The patient has remained well and without evidence of disease 18-months following transurethral resection of the lesion

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    Secular Evolution and the Growth of Pseudobulges in Disk Galaxies

    Full text link
    Galaxy evolution is in transition from an early universe dominated by hierarchical clustering to a future dominated by secular processes. These result from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. This paper summarizes a review by Kormendy & Kennicutt (2004) using, in part, illustrations of different galaxies. In simulations, bars rearrange disk gas into outer rings, inner rings, and galactic centers, where high gas densities feed starbursts. Consistent with this picture, many barred and oval galaxies have dense central concentrations of gas and star formation rates that can build bulge-like stellar densities on timescales of a few billion years. We conclude that secular evolution builds dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. Many pseudobulges can be recognized because they have characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be most rapid. Thus a variety of observational and theoretical results contribute to a new paradigm of secular evolution that complements hierarchical clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty; to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and Block, Dordrecht: Kluwer, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Dwarf Galaxies of the Local Group

    Get PDF
    The Local Group (LG) dwarf galaxies offer a unique window to the detailed properties of the most common type of galaxy in the Universe. In this review, I update the census of LG dwarfs based on the most recent distance and radial velocity determinations. I then discuss the detailed properties of this sample, including (a) the integrated photometric parameters and optical structures of these galaxies, (b) the content, nature and distribution of their ISM, (c) their heavy-element abundances derived from both stars and nebulae, (d) the complex and varied star-formation histories of these dwarfs, (e) their internal kinematics, stressing the relevance of these galaxies to the dark-matter problem and to alternative interpretations, and (f) evidence for past, ongoing and future interactions of these dwarfs with other galaxies in the Local Group and beyond. To complement the discussion and to serve as a foundation for future work, I present an extensive set of basic observational data in tables that summarize much of what we know, and what we still do not know, about these nearby dwarfs. Our understanding of these galaxies has grown impressively in the past decade, but fundamental puzzles remain that will keep the Local Group at the forefront of galaxy evolution studies for some time.Comment: 66 pages; 9 figures; 8 table

    On the Origin of S0 Galaxies

    Full text link
    I will review the basic properties of S0 galaxies in the local Universe in relation to both elliptical and spiral galaxies, their neighbours on the Hubble sequence, and also in relation to dwarf spheroidal (dSph) galaxies. This will include colours, luminosities, spectral features, information about the age and metallicity composition of their stellar populations and globular clusters, about their ISM content, as well as kinematic signatures and their implications for central black hole masses and past interaction events, and the number ratios of S0s to other galaxy types in relation to environmental galaxy density. I will point out some caveats as to their morphological discrimination against other classes of galaxies, discuss the role of dust and the wavelength dependence of bulge/disk light ratios. These effects are of importance for investigations into the redshift evolution of S0 galaxies -- both as individual objects and as a population. The various formation and transformation scenarios for S0 and dSph galaxies will be presented and confronted with the available observations.Comment: Invited Review, 18 pages, ``BARS 2004'' Conference, South Africa, June 2004, eds.: K. C. Freeman, D. L. Block, I. Puerari, R. Groess, Kluwer, in pres

    Hot gas flows on global and nuclear galactic scales

    Get PDF
    Since its discovery as an X-ray source with the Einstein Observatory, the hot X-ray emitting interstellar medium of early-type galaxies has been studied intensively, with observations of improving quality, and with extensive modeling by means of numerical simulations. The main features of the hot gas evolution are outlined here, focussing on the mass and energy input rates, the relationship between the hot gas flow and the main properties characterizing its host galaxy, the flow behavior on the nuclear and global galactic scales, and the sensitivity of the flow to the shape of the stellar mass distribution and the mean rotation velocity of the stars.Comment: 22 pages. Abbreviated version of chapter 2 of the book "Hot Interstellar Matter in Elliptical Galaxies", Springer 201

    Dynamics of Disks and Warps

    Full text link
    This chapter reviews theoretical work on the stellar dynamics of galaxy disks. All the known collective global instabilities are identified, and their mechanisms described in terms of local wave mechanics. A detailed discussion of warps and other bending waves is also given. The structure of bars in galaxies, and their effect on galaxy evolution, is now reasonably well understood, but there is still no convincing explanation for their origin and frequency. Spiral patterns have long presented a special challenge, and ideas and recent developments are reviewed. Other topics include scattering of disk stars and the survival of thin disks.Comment: Chapter accepted to appear in Planets, Stars and Stellar Systems, vol 5, ed G. Gilmore. 32 pages, 17 figures. Includes minor corrections made in proofs. Uses emulateapj.st
    corecore