67 research outputs found

    β-decay of odd-A Ti57 and V59

    Get PDF
    The β-decay of odd-A, neutron-rich Ti57 and V59 are studied. More precise β-decay half-lives of 98±5 and 97±2 ms are deduced for Ti57 and V59, respectively. In addition, β-delayed γ-ray spectroscopy is used to deduce β-decay branching ratios and establish the low-energy-level structures of the daughter nuclides. The new data for levels in V57 and Cr59 are compared with the results of shell-model calculations completed in the full pf model space. Both V57 and Cr59 show evidence of modest oblate deformation near the ground state

    Development of new shell structure in pf-shell nuclei

    Get PDF
    β-delayed γ-ray measurements have been part of an experimental program at the NSCL to understand the role of the πf7/2 - νf5/2 proton-neutron monopole interaction in neutron-rich pf-shell nuclei above 48Ca. Central to this study has been an attempt to observe the development of new shell structure at N 32, 34 through the systematic observation of E(2+1 ) as a function of neutron number. Additionally, the ground state spin and parity of odd-odd and odd-A nuclei were interpreted in an extreme single-particle model to follow the monopole migration of the νf5/2 as protons are removed from the πf7/2state

    Beta-delayed γ-ray studies of φf7/2 - νpf shell nuclei

    Get PDF
    We have utilized the selective process of β decay to populate low-energy excited states in the neutron-rich 22Ti, 23V, 24Cr, and 25Mn nuclei. The goal was to systematically track the monopole shift of the νf5/2 single-particle level with increased occupancy of the φf7/2 orbital.The β-decay properties of the parent nuclides, along with the low-energy structure of the daughters, are presented and compared with the results of shell model calculations employing the GXPF1 interaction
    corecore