43 research outputs found
The odd-number cyclo[13]carbon and its dimer, cyclo[26]carbon
Molecular rings of N carbon atoms (cyclo[N]carbons, or CN) are excellent benchmarking systems for testing quantum chemical theoretical methods and valuable precursors to other carbon-rich materials. Odd-N cyclocarbons, which have been elusive to date, are predicted to be even less stable than even-N cyclocarbons. We report the on-surface synthesis of cyclo[13]carbon, C13, by manipulation of decachlorofluorene with a scanning probe microscope tip. We elucidated the properties of C13 by experiment and theoretical modeling. C13 adopts an open-shell configuration with a triplet ground state and a kinked geometry, which shows different extents of distortion and carbene localization depending on the molecular environment. Moreover, we prepared and characterized the C13 dimer, cyclo[26]carbon, demonstrating the potential of cyclocarbons and their precursors as building blocks for carbon allotropes
Erratum to: Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment
Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment
Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can effect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive
Effective Long-Distance Pollen Dispersal in Centaurea jacea
BACKGROUND: Agri-environment schemes play an increasingly important role for the conservation of rare plants in intensively managed agricultural landscapes. However, little is known about their effects on gene flow via pollen dispersal between populations of these species. METHODOLOGY/PRINCIPAL FINDINGS: In a 2-year experiment, we observed effective pollen dispersal from source populations of Centaurea jacea in restored meadows, the most widespread Swiss agri-environment scheme, to potted plants in adjacent intensively managed meadows without other individuals of this species. Potted plants were put in replicated source populations at 25, 50, 100 m and where possible 200 m distance from these source populations. Pollen transfer among isolated plants was prevented by temporary bagging, such that only one isolated plant was accessible for flower visitors at any one time. Because C. jacea is self-incompatible, seed set in single-plant isolates indicated insect mediated effective pollen dispersal from the source population. Seed set was higher in source populations (35.7+/-4.4) than in isolates (4.8+/-1.0). Seed set declined from 18.9% of that in source populations at a distance of 25 m to 7.4% at 200 m. At a distance of 200 m seed set was still significantly higher in selfed plants, indicating long-distance effective pollen dispersal up to 200 m. Analyses of covariance suggested that bees contributed more than flies to this long-distance pollen dispersal. We found evidence that pollen dispersal to single-plant isolates was positively affected by the diversity and flower abundance of neighboring plant species in the intensively managed meadow. Furthermore, the decline of the dispersal was less steep when the source population of C. jacea was large. CONCLUSIONS: We conclude that insect pollinators can effectively transfer pollen from source populations of C. jacea over at least 200 m, even when "recipient populations" consisted of single-plant isolates, suggesting that gene flow by pollen over this distance is very likely. Source population size and flowering environment surrounding recipient plants appear to be important factors affecting pollen dispersal in C. jacea. It is conceivable that most insect-pollinated plants in a network of restored sites within intensively managed grassland can form metapopulations, if distances between sites are of similar magnitude as tested here
Recommended from our members
Identifying predictors of translocation success in rare plant species
The fundamental goal of a rare plant translocation is to create self-sustaining populations with the evolutionary resilience to persist in the long term. Yet, most plant translocation syntheses focus on a few factors influencing short-term benchmarks of success (e.g., survival and reproduction). Short-term benchmarks can be misleading when trying to infer future growth and viability because the factors that promote establishment may differ from those required for long-term persistence. We assembled a large (n = 275) and broadly representative data set of well-documented and monitored (7.9 years on average) at-risk plant translocations to identify the most important site attributes, management techniques, and species' traits for six life-cycle benchmarks and population metrics of translocation success. We used the random forest algorithm to quantify the relative importance of 29 predictor variables for each metric of success. Drivers of translocation outcomes varied across time frames and success metrics. Management techniques had the greatest relative influence on the attainment of life-cycle benchmarks and short-term population trends, whereas site attributes and species' traits were more important for population persistence and long-term trends. Specifically, large founder sizes increased the potential for reproduction and recruitment into the next generation, whereas declining habitat quality and the outplanting of species with low seed production led to increased extinction risks and a reduction in potential reproductive output in the long-term, respectively. We also detected novel interactions between some of the most important drivers, such as an increased probability of next-generation recruitment in species with greater seed production rates, but only when coupled with large founder sizes. Because most significant barriers to plant translocation success can be overcome by improving techniques or resolving site-level issues through early intervention and management, we suggest that by combining long-term monitoring with adaptive management, translocation programs can enhance the prospects of achieving long-term success
Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab
This document presents the initial scientific case for upgrading the
Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab)
to 22 GeV. It is the result of a community effort, incorporating insights from
a series of workshops conducted between March 2022 and April 2023. With a track
record of over 25 years in delivering the world's most intense and precise
multi-GeV electron beams, CEBAF's potential for a higher energy upgrade
presents a unique opportunity for an innovative nuclear physics program, which
seamlessly integrates a rich historical background with a promising future. The
proposed physics program encompass a diverse range of investigations centered
around the nonperturbative dynamics inherent in hadron structure and the
exploration of strongly interacting systems. It builds upon the exceptional
capabilities of CEBAF in high-luminosity operations, the availability of
existing or planned Hall equipment, and recent advancements in accelerator
technology. The proposed program cover various scientific topics, including
Hadron Spectroscopy, Partonic Structure and Spin, Hadronization and Transverse
Momentum, Spatial Structure, Mechanical Properties, Form Factors and Emergent
Hadron Mass, Hadron-Quark Transition, and Nuclear Dynamics at Extreme
Conditions, as well as QCD Confinement and Fundamental Symmetries. Each topic
highlights the key measurements achievable at a 22 GeV CEBAF accelerator.
Furthermore, this document outlines the significant physics outcomes and unique
aspects of these programs that distinguish them from other existing or planned
facilities. In summary, this document provides an exciting rationale for the
energy upgrade of CEBAF to 22 GeV, outlining the transformative scientific
potential that lies within reach, and the remarkable opportunities it offers
for advancing our understanding of hadron physics and related fundamental
phenomena.Comment: Updates to the list of authors; Preprint number changed from theory
to experiment; Updates to sections 4 and 6, including additional figure
Survey of Appearance and temporal concentrations of polar organic pollutants in Saxon waters
Integrative passive samplers such as the Chemcatcher are often proposed as alternatives for conventional grab sampling of surface waters. So far, their routine application for regulatory monitoring is hampered (among others) by the fact that TWA concentrations may depend significantly on the design and specifics of the samplers employed. The presented study addresses this issue, focusing on the uptake of polar organic pollutants in three different Chemcatcher configurations and polydimethylsiloxane (PDMS) sheets in the field. Covering waste water treatment plant effluents, creeks, and rivers, samplers were deployed for periods of 14–21 days in eight trials over the course of one year. 33 organic pesticides, 14 transformation products and 31 pharmaceuticals could be detected at least once in TWA concentrations ranging from 0.03 ng/L to 16.5 μg/L. We show that through employing generic, i.e. sampler specific, rather than compound specific sampling rates, the variation among results from three integrative passive sampler designs yields linear correlations with an offset of less than 0.1 and correlation coefficients r2 > 0.8. In this way, TWA concentrations enable the identification of low-concentration xenobiotics of concern, which may support regulatory monitoring correspondingly