81 research outputs found

    Scaling law of Wolff cluster surface energy

    Full text link
    We study the scaling properties of the clusters grown by the Wolff algorithm on seven different Sierpinski-type fractals of Hausdorff dimension 1<df31 < d_f \le 3 in the framework of the Ising model. The mean absolute value of the surface energy of Wolff cluster follows a power law with respect to the lattice size. Moreover, we investigate the probability density distribution of the surface energy of Wolff cluster and are able to establish a new scaling relation. It enables us to introduce a new exponent associated to the surface energy of Wolff cluster. Finally, this new exponent is linked to a dynamical exponent via an inequality.Comment: 12 pages, 3 figures. To appear in PR

    Generalized Einstein Relation in an aging colloidal glass

    Get PDF
    20 pages, 6 figures; revised versionInternational audienceWe present an experimental and theoretical investigation of the Generalized Einstein Relation (GER), a particular form of a fluctuation-dissipation relation, in an out-of-equilibrium visco-elastic fluid. Micrometer beads, used as thermometers, are immersed in an aging colloidal glass to provide both fluctuation and dissipation measurements. The deviations from the Generalized Einstein Relation are derived as a function of frequency and aging time. The observed deviations from GER are interpreted as directly related to the change in the glass relaxation times with aging time. In our scenario, deviations are observed in the regime where the observation time scale is of the order of a characteristic relaxation time of the glass

    Spontaneous Breaking of Isotropy Observed in the Electronic Transport of Rare-Earth Tritellurides

    No full text
    International audienceWe show that the isotropic conductivity in the normal state of rare-earth tritelluride RTe3 compounds is broken by the occurrence of theunidirectional charge density wave (CDW) in the (a, c) plane below the Peierls transition temperature. In contrast with quasi-one-dimensional systems, the resistivity anomaly associated with the CDW transition is strong in the direction perpendicular to the CDW wave vector Q (a axis) and very weak in the CDW wave vector Q direction (c axis). We qualitatively explain this result by calculating the electrical conductivity for the electron dispersion with momentum-dependent CDW gap as determined by angle-resolved photoemission spectroscopy. Similar measurements of in-plane conductivity may uncover the gap anisotropy in other compounds for which angle-resolved photoemission spectroscopy is not available

    Mechanism of metal dusting corrosion by pitting of a chromia-forming alloy at atmospheric pressure and low gas velocity

    Get PDF
    FeNiCr samples (800HT) were exposed at 570 °C, 1 bar to a 47.25CO-47.25H2-5.5H2O atmosphere (ac = 33) flowing at 18 μm/s. Pitting corrosion was observed. Pits showed a flattened morphology and a constant pit diameter growth rate. Corrosion rings appeared successively at the surface during pit growth. A four-step mechanism is proposed which includes internal oxidation of carbides, graphitisation and localised enhanced graphitisation. Gas velocity and thermal cycling play key roles in pit morphology. Thermal cycling induces circular cracks. Low gas velocity induces the gas to evolve in crevices, due to local oxygen consumption

    Finite dimensional quantizations of the (q,p) plane : new space and momentum inequalities

    Get PDF
    We present a N-dimensional quantization a la Berezin-Klauder or frame quantization of the complex plane based on overcomplete families of states (coherent states) generated by the N first harmonic oscillator eigenstates. The spectra of position and momentum operators are finite and eigenvalues are equal, up to a factor, to the zeros of Hermite polynomials. From numerical and theoretical studies of the large NN behavior of the product λ_m(N)λ_M(N)\lambda\_m(N) \lambda\_M(N) of non null smallest positive and largest eigenvalues, we infer the inequality δ_N(Q)Δ_N(Q)=σ_NN<2π\delta\_N(Q) \Delta\_N(Q) = \sigma\_N \overset{<}{\underset{N \to \infty}{\to}} 2 \pi (resp. δ_N(P)Δ_N(P)=σ_NN<2π\delta\_N(P) \Delta\_N(P) = \sigma\_N \overset{<}{\underset{N \to \infty}{\to}} 2 \pi ) involving, in suitable units, the minimal (δ_N(Q)\delta\_N(Q)) and maximal (Δ_N(Q)\Delta\_N(Q)) sizes of regions of space (resp. momentum) which are accessible to exploration within this finite-dimensional quantum framework. Interesting issues on the measurement process and connections with the finite Chern-Simons matrix model for the Quantum Hall effect are discussed

    Relation between microstructure induced by oxidation and room-temperature mechanical properties of the thermally grown oxide scales on austenitic stainless steels

    Get PDF
    The spalling/cracking behaviour, at room temperature, of thermally grown oxide scales under tensile stress was investigated using SEM in-situ tensile testing for two austenitic stainless steels with close composition except their S content. A correlation between damage patterns, microstructure, mechanical and adhesion properties of the oxide scales is proposed. The difference in microstructure evolution during oxidation between the two steels is explained in relation with the volume fraction of MnS inclusions in the substrate (i.e. S content). Although a direct effect of S content on the oxide scale adhesion is not evidenced, the metal/oxide toughness seems strongly affected by oxides features such as scale thickness, Fe content and location of internal oxides (SiO2 along the metal/scale interface or at the grain boundaries of the underneath substrate)

    Critical behavior of the 3-state Potts model on Sierpinski carpet

    Full text link
    We study the critical behavior of the 3-state Potts model, where the spins are located at the centers of the occupied squares of the deterministic Sierpinski carpet. A finite-size scaling analysis is performed from Monte Carlo simulations, for a Hausdorff dimension dfd_{f} 1.8928\simeq 1.8928. The phase transition is shown to be a second order one. The maxima of the susceptibility of the order parameter follow a power law in a very reliable way, which enables us to calculate the ratio of the exponents γ/ν\gamma /\nu. We find that the scaling corrections affect the behavior of most of the thermodynamical quantities. However, the sequence of intersection points extracted from the Binder's cumulant provides bounds for the critical temperature. We are able to give the bounds for the exponent 1/ν1/\nu as well as for the ratio of the exponents β/ν\beta/\nu, which are compatible with the results calculated from the hyperscaling relation.Comment: 13 pages, 4 figure

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Comparison of damaging behavior of oxide scales grown on austenitic stainless steels using tensile test and cyclic thermogravimetry

    Get PDF
    Two austenitic stainless steels, AISI 304L and AISI 303, were submitted to cyclic oxidation and to staticmechanical loading after isothermal oxidation at 1000◦C. Alloy 303 contains ten times more S than 304Land some Mn addition. During the steel process, it formed manganese sulfides that lead to the formationof a less resistant oxide scale. Both alloys showed similar behavior during thermal cycling but breakawayoxidation and intensive spallation occurred much sooner for alloy 303 than for alloy 304L. A correlationcould be drawn between tensile test on preoxidized samples, isothermal and cyclic oxidation
    corecore