14 research outputs found

    Plant products with antifungal activity. From field to biotechnology strategies

    No full text
    In this chapter, informations on the recent advances regarding antifungal activity of natural products obtained from plants collected directly from their natural habitat or from plant cell and organ, cultures have been reported. The biotechnological approaches could increase uniformity and predictability of the extracts and overcome problems associated with geographical, seasonal, and environmental variations. Human fungal pathogens are the cause of severe diseases associated with high morbidity and mortality. The major human fungal pathogens are Candida species, dermatophytes, Aspergillus species, and Cryptococcus neoformans. Side effects and resistance are frequently attributed to the current antifungal agents. Moreover, the treatments often require long-term therapy and are not resolving. Plants represent a source of antifungal agents, but up to date, the number of new phytochemicals reaching the market is very low. This review attempts to summarize the current status of botanical screening efforts, as well as in vitro and in vivo studies on antifungal activity of plant products. Despite the currently non-uniform regulatory framework in all the states, the plant-derived products are increasingly in demand for their effectiveness. The basic conclusion from these studies is that rigorous, well-designed clinical trials are needed to validate the effectiveness and safety of plant extracts for their use as antifungals

    Nanotechnology and Plant Extracts as a Future Control Strategy for Meat and Milk Products

    No full text
    Plant extracts, well known for their antibacterial and antioxidant activity, have potential to be widely used preservatives in the food industry as natural alternatives to numerous synthetic additives which have adverse impacts on health and the environment. Most plant compounds and extracts are generally recognized as safe (GRAS). The use of preservatives is of great importance for perishable foods such as meat and milk, which, along with their products, are commonly consumed food items globally. However, the bioavailability of plant compounds could be diminished by their interaction with food components, processing, and storage. Nanoencapsulation of plant extracts, especially essential oils, is an effective method for their application in food model systems. This technique increases the bioactivity of plant compounds by increasing their physical stability and reducing their size, without negative effects on organoleptic properties. Furthermore, a recent study showed that plant extracts act as good bioreductants for biosynthesis of nanoparticles. This so-called green synthesis method using plant extracts is a rapid, relatively inexpensive, safe, and efficient method for synthesis of nanoparticles including silver, gold, iron, lead, copper, cobalt, palladium, platinum, zinc, zinc oxide, titanium oxide, magnetite, and nickel. Some of these nanoparticles have antimicrobial potential which is why they are of great interest to the food industry. In this chapter, the nanoencapsulation of plant extracts and plant extract-mediated synthesis of nanoparticles and their potential application in order to improve the safety and quality and prolong the shelf life of meat and milk products are reviewed and discussed
    corecore