33 research outputs found

    Design and Diagnostics of High-Precision Accelerator Neutrino Beams

    No full text
    Neutrino oscillation physics has entered a new precision era, which poses major challenges to the level of control and diagnostics of the neutrino beams. In this paper, we review the design of high-precision beams, their current limitations, and the latest techniques envisaged to overcome such limits. We put emphasis on “monitored neutrino beams” and advanced diagnostics to determine the flux and flavor of the neutrinos produced at the source at the per-cent level. We also discuss ab-initio measurements of the neutrino energy–i.e., measurements performed without relying on the event reconstruction at the Îœ detector–to remove any flux induced bias in the determination of the cross sections

    NuTag: proof-of-concept study for a long-baseline neutrino beam

    No full text
    International audienceThe study of neutrino oscillation at accelerators is limited by systematic uncertainties, in particular on the neutrino flux, cross-section, and energy estimates. These systematic uncertainties could be eliminated by a novel experimental technique: neutrino tagging. This technique relies on a new type of neutrino beamline and its associated instrumentation which would enable the kinematical reconstruction of the neutrinos produced in π±→Ό±ΜΌ\pi^{\pm} \to \mu^{\pm} \nu_\mu and K±→Ό±ΜΌK^{\pm} \to \mu^{\pm} \nu_\mu decays. This article presents a proof-of-concept study for such a tagged beamline, aiming to serve a long baseline neutrino experiment exploiting a megaton scale natural water Cherenkov detector. After optimizing the target and the beamline optics to first order, a complete Monte Carlo simulation of the beamline has been performed. The results show that the beamline provides a meson beam compatible with the operation of the spectrometer, and delivers a neutrino flux sufficient to collect neutrino samples with a size comparable with similar experiments and with other un-tagged long-baseline neutrino experimental proposals

    The ENUBET Multi Momentum Secondary Beamline Design

    No full text
    The aim of neutrino physics for the next decades is to detect effects due to CP violation, mass hierarchy, and search for effects beyond the Standard Model predictions. Future experiments need precise measurements of the neutrino interaction cross-sections at the ~GeV/c regime, currently limited by the exact knowledge of the initial neutrino flux on a ~10-20% uncertainty level. The ENUBET project is proposing a novel facility, capable of constraining the neutrino flux normalization through the precise monitoring of the Ke3 (K±>e+pi0nu) decay products in an instrumented decay tunnel. ENUBET can also monitor muons from the two body kaon and pion decays (nu flux) and measure the neutrino energy with a 10% precision without relying on the event reconstruction at the neutrino detector. We present here a novel design based on a broad (4-8.5 GeV/c) momentum range secondary beamline, that widen the cross-section energy range that can be explored by ENUBET. In this poster, we discuss the target optimization studies and we show the early results on the new line’s optics and the layout design. We discuss the expected performance of this line and the forthcoming activities

    M2 Experimental Beamline Optics Studies for Next Generation Muon Beam Experiments at CERN

    No full text
    In the context of the Physics Beyond Colliders Project, various new experiments have been proposed for the M2 beamline at the CERN North Area fixed target experimental facility. The experiments include MUonE, NA64”, and the successor to the COMPASS experiment, tentatively named AMBER/NA66. The AMBER/NA66 collaboration proposes to build a QCD facility requiring conventional muon and hadron beams for runs up to 2024 in the first phase of the experiment. MUonE aims to measure the hadronic contribution to the vacuum polarization in the context of the (g”-2) anomaly with a setup longer than 40 m and a 160 GeV/c high intensity, low divergence muon beam. NA64” is a muon beam program for dark sector physics requiring a 100 - 160 GeV/c muon beam with a 15-25 m long setup. All three experiments request similar beam times up to 2024 with compelling physics programs, which required launching extensive studies for integration, installation, beam optics, and background estimations. The experiments will be presented along with details of the studies performed to check their feasibility and compatibility with an emphasis on the updated optics for these next-generation muon beam experiments

    Kaon beam simulations employing conventional hadron beam concepts and the RF separation technique at the CERN M2 beamline for the future AMBER experiment

    No full text
    The future AMBER experiment aims to measure the inner structure and the excitation spectra of kaons with a high intensity kaon beam at the CERN secondary beam line M2. One way to identify the small fraction of kaons in the available beam is tagging with the help of differential Cherenkov detectors (CEDARs), whose detection efficiency depends critically on the beam parallelism. In the framework of the Conventional Beams Working Group of the Physics Beyond Colliders Initiative at CERN, several possible improvements of the conventional beam optics have been studied, trying to achieve a better parallelism, investigating especially the reduction of multiple scattering. Additionally, with the aim of increasing the Kaon purity of the beam, a Radio-Frequency separation technique has been also studied. This method exploits the differences in velocity due to the particle mass in the beam, kicking out unwanted particles with the help of two RF cavities. The limitations posed by the beam line for intensity and purity will be presented along with preliminary results of the potential purity and intensity reach of the RF-separated beam. Finally, the RF-separated beam is compared with the conventional hadron beam in terms of potential physics reach

    ENUBET: A monitored neutrino beam for high precision cross section measurements

    No full text
    International audienceThe main source of systematic uncertainty on neutrino cross section measurements at the GeV scale is represented by the poor knowledge of the initial flux. The goal of cutting down this uncertainty to 1% can be achieved through the monitoring of charged leptons produced in association with neutrinos, by properly instrumenting the decay region of a conventional narrow-band neutrino beam. Large angle muons and positrons from kaons are measured by a sampling calorimeter on the decay tunnel walls (tagger), while muon stations after the hadron dump can be used to monitor the neutrino component from pion decays. This instrumentation can provide a full control on both the muon and electron neutrino fluxes at all energies. Furthermore, the narrow momentum width (<10%) of the beam provides a O(10%) measurement of the neutrino energy on an event by event basis, thanks to its correlation with the radial position of the interaction at the neutrino detector. The ENUBET project has been funded by the ERC in 2016 to prove the feasibility of such a monitored neutrino beam and is cast in the framework of the CERN neutrino platform (NP06) and the Physics Beyond Colliders initiative. In our contribution, we summarize the ENUBET design, physics performance and opportunities for its implementation in a timescale comparable with next long baseline neutrino experiments

    Lepton reconstruction in the ENUBET tagger

    No full text
    The ENUBET project aims at demonstrating the feasibility of a monitored neutrino beam in which the measurement of associated charged leptons in the instrumented decay region of a conventional beam is used to constrain the neutrino flux to unprecedented precision (O\mathcal{O}(1\%)). Large angle muons and positrons from kaon decays are detected on the decay tunnel walls equipped with a sampling calorimeter with longitudinal, radial and azimuthal segmentation. After a brief description of the ENUBET beamline and of the detectors employed in the lepton tagger, the analysis chain for the event reconstruction, the background suppression and the identification of positrons and muons will be described

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore