39 research outputs found
Why are flare ribbons associated with the spines of magnetic null points generically elongated?
Coronal magnetic null points exist in abundance as demonstrated by
extrapolations of the coronal field, and have been inferred to be important for
a broad range of energetic events. These null points and their associated
separatrix and spine field lines represent discontinuities of the field line
mapping, making them preferential locations for reconnection. This field line
mapping also exhibits strong gradients adjacent to the separatrix (fan) and
spine field lines, that can be analysed using the `squashing factor', . In
this paper we make a detailed analysis of the distribution of in the
presence of magnetic nulls. While is formally infinite on both the spine
and fan of the null, the decay of away from these structures is shown in
general to depend strongly on the null-point structure. For the generic case of
a non-radially-symmetric null, decays most slowly away from the spine/fan
in the direction in which increases most slowly. In particular,
this demonstrates that the extended, elliptical high- halo around the spine
footpoints observed by Masson et al. (Astrophys. J., 700, 559, 2009) is a
generic feature. This extension of the halos around the spine/fan
footpoints is important for diagnosing the regions of the photosphere that are
magnetically connected to any current layer that forms at the null. In light of
this, we discuss how our results can be used to interpret the geometry of
observed flare ribbons in `circular ribbon flares', in which typically a
coronal null is implicated. We conclude that both the physics in the vicinity
of the null and how this is related to the extension of away from the
spine/fan can be used in tandem to understand observational signatures of
reconnection at coronal null points.Comment: Pre-print version of article accepted for publication in Solar
Physic
Flux-rope twist in eruptive flares and CMEs : due to zipper and main-phase reconnection
Funding: UK Science and Technology Facilities CouncilThe nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D “zipper reconnection” propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D “main phase reconnection” in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.PostprintPublisher PDFPeer reviewe
Dias ao Parto de Fêmeas Nelore de um Experimento de Seleção para Crescimento: I - Modelo de Repetibilidade
Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations
Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption
X.C., J.Q.S., M.D.D., Y.G., P.F.C. and C.F. are supported by NSFC through grants 11303016, 11373023, 11203014 and 11025314, and by NKBRSF through grants 2011CB811402 and 2014CB744203. C.E.P. and S.J.E. are supported by the UK STFC. J.Z. is supported by US NSF AGS-1249270 and AGS-1156120.Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively, and it is responsible for various eruptive phenomena in the universe. However, this process is difficult to observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from ∼ 1 to ≥ 5MK. Shortly afterwards, warm flare loops (∼3MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a three-dimensional configuration and reveal its origin.Publisher PDFPeer reviewe
