2 research outputs found

    Deformation Projected RMF Calculation for Cr and Fe nuclei in Hybrid Derivative Coupling Model

    Full text link
    The ground state properties of even mass Cr and Fe isotopes are studied using the generalized hybrid derivative coupling model. The energy surface of each isotope is plotted as a function of the mass quadrupole moment. The neutron numbers N=20 and N=40 are seen to remain magic numbers but N= 28 and 50 are predicted to be non-magic. The neutron number N=70 turns out to be a magic number according to the present calculation. In all the isotopes studied the calculated binding energy values are less than those obtained from experiment while the deformation is in better agreement.Comment: To appear in Int. Jour. Mod. Phys.

    Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis

    No full text
    Abstract The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery
    corecore