6,745 research outputs found

    The East Asian Model of Economic Development and Developing Countries

    Get PDF
    This paper examines the debate on the East Asian model of economic development in light of the different approaches undertaken by different groups of countries (economies) in Northeast Asia and Southeast Asia. The common strengths and weaknesses shared by the East Asian countries (economies) have helped to reinforce the misconception that there is a single East Asian model of economic development. There are, however, significant differences in economic structures as well as development experiences among the East Asian economies, especially between the economic development paradigms of Southeast Asia and Northeast Asia. Nonetheless, one single common thread underlies the differences in development strategies and experiences among the East Asian economies—the role of the government. The governments of East Asia have recognized the limitations of markets (or market failures) in the allocation of scarce resources in the economy, and have used government interventions to promote economic development. The recent Asian crisis hardly signifies the end of the so-called East Asian model of economic development

    Globalization of Financial Markets and the Asian Crisis: Some Lessons for Third World Developing Countries

    Get PDF
    Park examines the causes of the Asian financial crisis and draws some lessons and implications for a series of issues, which may be of particular relevance to the Third World developing countries. These issues include: the appropriate role of the International Monetary Fund as an international agency in charge of helping member countries to maintain financial stability; the choice of an appropriate exchange rate regime and use of restrictions on private capital flows in the face of rising globalization; and the debate on the East Asian model of economic development

    Designing signaling environments to steer transcriptional diversity in neural progenitor cell populations

    Get PDF
    Stem cell populations within developing embryos are diverse, composed of many different subpopulations of cells with varying developmental potential. The structure of stem cell populations in cell culture remains poorly understood and presents a barrier to differentiating stem cells for therapeutic applications. In this paper we develop a framework for controlling the architecture of stem cell populations in cell culture using high-throughput single cell mRNA-seq and computational analysis. We find that the transcriptional diversity of neural stem cell populations collapses in cell culture. Cell populations are depleted of committed neuron progenitor cells and become dominated by a single pre-astrocytic cell population. By analyzing the response of neural stem cell populations to forty distinct signaling conditions, we demonstrate that signaling environments can restructure cell populations by modulating the relative abundance of pre-astrocyte and pre-neuron subpopulations according to a simple linear code. One specific combination of BMP4, EGF, and FGF2 ligands switches the default population balance such that 70% of cells correspond to the committed neurons. Our work demonstrates that single-cell RNA-seq can be applied to modulate the diversity of in vitro stem cell populations providing a new strategy for population-level stem cell control

    Search for Boosted Dark Matter at ProtoDUNE

    Full text link
    We propose the first experimental test of the inelastic boosted dark matter hypothesis, capitalizing on the new physics potential with the imminent data taking of the ProtoDUNE detectors. More specifically, we explore various experimental signatures at the cosmic frontier, arising in boosted dark matter scenarios, i.e., relativistic, inelastic scattering of boosted dark matter often created by the annihilation of its heavier component which usually comprises of the dominant relic abundance. Although features are unique enough to isolate signal events from potential backgrounds, vetoing a vast amount of cosmic background is rather challenging as the detectors are located on the ground. We argue, with a careful estimate, that such backgrounds nevertheless can be well under control by performing dedicated analyses after data acquisition. We then discuss some phenomenological studies which can be achieved with ProtoDUNE, employing a dark photon scenario as our benchmark dark-sector model.Comment: Supplemental material include

    Designing signaling environments to steer transcriptional diversity in neural progenitor cell populations

    Get PDF
    Stem cell populations within developing embryos are diverse, composed of many different subpopulations of cells with varying developmental potential. The structure of stem cell populations in cell culture remains poorly understood and presents a barrier to differentiating stem cells for therapeutic applications. In this paper we develop a framework for controlling the architecture of stem cell populations in cell culture using high-throughput single cell mRNA-seq and computational analysis. We find that the transcriptional diversity of neural stem cell populations collapses in cell culture. Cell populations are depleted of committed neuron progenitor cells and become dominated by a single pre-astrocytic cell population. By analyzing the response of neural stem cell populations to forty distinct signaling conditions, we demonstrate that signaling environments can restructure cell populations by modulating the relative abundance of pre-astrocyte and pre-neuron subpopulations according to a simple linear code. One specific combination of BMP4, EGF, and FGF2 ligands switches the default population balance such that 70% of cells correspond to the committed neurons. Our work demonstrates that single-cell RNA-seq can be applied to modulate the diversity of in vitro stem cell populations providing a new strategy for population-level stem cell control

    Statistics and Characteristics of Spatio-Temporally Rare Intense Events in Complex Ginzburg-Landau Models

    Full text link
    We study the statistics and characteristics of rare intense events in two types of two dimensional Complex Ginzburg-Landau (CGL) equation based models. Our numerical simulations show finite amplitude collapse-like solutions which approach the infinite amplitude solutions of the nonlinear Schr\"{o}dinger (NLS) equation in an appropriate parameter regime. We also determine the probability distribution function (PDF) of the amplitude of the CGL solutions, which is found to be approximately described by a stretched exponential distribution, P(∣A∣)≈e−∣A∣ηP(|A|) \approx e^{-|A|^\eta}, where η<1\eta < 1. This non-Gaussian PDF is explained by the nonlinear characteristics of individual bursts combined with the statistics of bursts. Our results suggest a general picture in which an incoherent background of weakly interacting waves, occasionally, `by chance', initiates intense, coherent, self-reinforcing, highly nonlinear events.Comment: 7 pages, 9 figure
    • …
    corecore