41 research outputs found

    Screening for drought resistance in rainfed lowland rice

    No full text
    In this review, reasons for the slow progress in development of drought resistant cultivars for rainfed lowland rice are considered first. Recent advances in screening methods for development of drought resistant cultivars from mostly our research in Thailand in the 1990s, are then described for drought that develops early or late in the wet-season. There now appears to be a good prospect for developing drought resistant cultivars that produce higher yield than existing cultivars when drought develops late in the wet-season. Appropriate phenology to escape late-season drought and high potential yield under well-watered conditions are important characters for cultivars adapted to rainfed lowland conditions. In addition, ability to maintain higher leaf water potential when drought develops late in the season is another desirable character. Maintenance of leaf water potential just prior to flowering is associated with higher panicle water potential, reduced delay in flowering time, and reduced spikelet sterility, and hence contributes to higher yield. Genotypes that are adapted to areas of late-season drought should also have high harvest index, intermediate height and rather small total dry matter compared to existing traditional cultivars, under well-watered conditions. This combination of characters would ensure high potential yield under favourable conditions and also contribute to resistance against late-season drought. Screening against early-season drought that develops during the vegetative stage is more difficult, as the genotype's ability to recover from the stress appears more important than drought tolerance during the stress period. Other than appropriate phenology, high potential yield and ability to maintain high leaf water potential, no specific physiological and morphological characters appear to contribute directly to higher yield under drought conditions in rainfed lowland rice in Thailand, where drought develops rather rapidly due to the prevailing coarse textured soils. It is thus appropriate to develop a breeding program that is primarily based on selection for grain yield. There are large genotype by environment interactions for yield in rainfed lowland rice and hence it is important that genotypes are selected for yield under appropriate target environments. Addition of a drought screening program that is conducted in the field in the wet-season to the overall breeding program would enhance the opportunity to select for drought resistance within the breeding materials and increase the chance of developing high yielding cultivars adapted to the drought-prone rainfed lowland environments. (C) 1999 Elsevier Science B.V. All rights reserved

    Field screening for drought resistance

    No full text

    Improving drought tolerance in rainfed lowland rice: an example from Thailand

    No full text
    A large portion of the world’s poor farm in rainfed systems where the water supply is unpredictable and droughts are common. In Thailand there are approximately 6.2 million ha of rain fed lowland rice which account for 67% of the country’s total rice-growing area. This rice system is often characterised by too much and too little water in the same season. Farmers’ estimates of their annual losses to drought are as high as 45% in the upper parts of the toposequence. In contrast to irrigated rice systems, gains from crop improvement of rainfed rice have been modest, in part because there has been little effort to breed and select for drought tolerance for the target rainfed environments. The crop improvement strategy being used in Thailand considers three mechanisms that influence yield in the drought prone targets: yield potential as an important mechanism for mild drought (where yield loss is less than 50%), drought escape (appropriate phenology) and drought tolerance traits of leaf water potential, sterility, flower delay and drought response index for more severe drought conditions. Genotypes are exposed to managed drought environments for selection of drought tolerant genotypes. A marker assisted selection (MAS) scheme has been developed and applied for selection of progenies in the backcrossing program. The plant breeding program uses rapid generation advance techniques that enable early yield testing in the target population of environments (TPE) through inter-station (multi-location yield testing) and on-farm trials. A farmer participatory approach has been used to identify the TPE for the breeding program. Four terrace paddy levels have been identified, upper (drought), middle (drought prone to favorable) and lower (flooded). This paper reports the change in the breeding program for the drought prone rainfed lowland rice environments of North and Northeast Thailand by incorporating our knowledge on adaptation and on response of rice to drought

    Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands - Part 3. Plant factors contributing to drought resistance

    No full text
    A series of experiments were conducted in drought-prone northeast Thailand to examine the magnitude of yield responses of diverse genotypes to drought stress environments and to identify traits that may confer drought resistance to rainfed lowland rice. One hundred and twenty eight genotypes were grown under non-stress and four different types of drought stress conditions. Under severe drought conditions, the maintenance of PWP of genotypes played a significant role in determining final grain yield. Because of their smaller plant size (lower total dry matter at anthesis) genotypes that extracted less soil water during the early stages of the drought period, tended to maintain higher PWP and had a higher fertile panicle percentage, filled grain percentage and final grain yield than other genotypes. PWP was correlated with delay in flowering (r = -0.387) indicating that the latter could be used as a measure of water potential under stress. Genotypes with well-developed root systems extracted water too rapidly and experienced severe water stress at flowering. RPR which showed smaller coefficient of variation was more useful than root mass density in identifying genotypes with large root system. Under less severe and prolonged drought conditions, genotypes that could achieve higher plant dry matter at anthesis were desirable. They had less delay in flowering, higher grain yield and higher drought response index, indicating the importance of ability to grow during the prolonged stress period. Other shoot characters (osmotic potential, leaf temperature, leaf rolling, leaf death) had little effect on grain yield under different drought conditions. This was associated with a lack of genetic variation and difficulty in estimating trait values precisely. Under mild stress conditions (yield loss less than 50%), there was no significant relationship between the measured drought characters and grain yield. Under these mild drought conditions, yield is determined more by yield potential and phenotype than by drought resistant mechanisms per se. (C) 2002 Elsevier Science B.V. All rights reserved

    Yield responses of rice (Oryza Sativa L.) genotypes to water deficit in rainfed lowlands

    No full text

    Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands - Part 2. Selection of drought resistant genotypes

    No full text
    Drought frequently reduces grain yield of rainfed lowland rice. A series of experiments were conducted in drought-prone northeast Thailand to study the magnitude and consistency of yield responses of diverse, rainfed lowland rice genotypes to drought stress environments and to examine ways to identify genotypes that confer drought resistance. One hundred and twenty-eight genotypes were grown under non-stress and four different types of drought stress conditions. The relationship of genotypic variation in yield under drought conditions to genetic yield potential, flowering time and flowering delay, and to a drought response index (DRI) that removed the effect of potential yield and flowering time on yield under stress was examined. Drought stress that developed prior to flowering generally delayed the time of flowering of genotypes, and the delay in flowering was negatively associated with grain yield, fertile panicle percentage and filled grain percentage. Genotypes with a longer delay in flowering time had extracted more water during the early drought period, and as a consequence, had higher water deficits. They were consistently associated with a larger yield reduction under drought and in one experiment with a smaller DRI. Genotypes, however, responded differently to the different drought stress conditions and there was no consistency in the DRI estimates for the different genotypes across the drought stress experiments. The results indicate that with the use of irrigated-control and drought test environments, genotypes with drought resistance can be identified by using DRI or delay in flowering. However, selections will differ depending on the type of drought condition. The inconsistency of the estimates in DRI and flowering delay across different drought conditions reflects the nature of the large genotype-by-environment interactions observed for grain yield under various types of drought in rainfed lowland conditions. (C), 2002 Elsevier Science B.V. All rights reserved
    corecore