1,736 research outputs found

    Higgs sector of the MSSM: lepton flavor violation at colliders and neutralino dark matter

    Get PDF
    We examine the prospects for the detection of Higgs mediated lepton flavor violation at LHC and at a photon collider in the minimal supersymmetric standard model with large lepton flavor violating mass insertions in the μ−τ\mu-\tau sector constraining the parameter space with several experimental bounds. We find rates probably too small to be observed at future experiments if models have to accommodate for a neutralino relic density as measured by WMAP and explain the (g−2)μ(g-2)_{\mu} anomaly: better prospects are found if these two constraints are applied only as upper bounds. The spin-independent neutralino-nucleon cross section in the studied constrained parameter space is just below the present CDMS limit while gamma rates from neutralino annihilation in the halo are strongly suppressed.Comment: 6 pages, 2 figures, Prepared for the proceedings of the workshop: "LC09: e+e−e^+ e^- Physics at the TeV Scale and the Dark Matter Connection", 21-24 September 2009, Perugia, Ital

    Unparticle Casimir effect

    Full text link
    In this paper we present the un-Casimir effect, namely the study of the Casimir energy in the presence of an unparticle component in addition to the electromagnetic field contribution. The distinctive feature of the un-Casimir effect is a fractalization of metallic plates. This result emerges through a new dependence of the Casimir energy on the plate separation that scales with a continuous power controlled by the unparticle dimension. As long as the perfect conductor approximation is valid, we find bounds on the unparticle scale that are independent of the effective coupling constant between the scale invariant sector and ordinary matter. We find regions of the parameter space such that for plate distances around 5μ5\mum and larger the un-Casimir bound wins over the other bounds.Comment: 13 pages, 3 figures; v2: improved discussion, additional references, v3: title slightly changed, version matching that in press on Physics Letters

    Perturbative unitarity bounds for effective composite models

    Get PDF
    In this paper we present the partial wave unitarity bound in the parameter space of dimension-5 and dimension-6 effective operators that arise in a compositeness scenario. These are routinely used in experimental searches at the LHC to constraint contact and gauge interactions between ordinary Standard Model fermions and excited (composite) states of mass MM. After deducing the unitarity bound for the production process of a composite neutrino, we implement such bound and compare it with the recent experimental exclusion curves for Run 2, the High-Luminosity and High-Energy configurations of the LHC. Our results also applies to the searches where a generic single excited state is produced via contact interactions. We find that the unitarity bound, so far overlooked, is quite complelling and significant portions of the parameter space (M,ΛM,\Lambda) become excluded in addition to the standard request M≤ΛM \le \Lambda.Comment: This version of the paper merges the previous version published in Phys. Lett. B 795 (2019) 644-649 (https://doi.org/10.1016/j.physletb.2019.06.042) with the subsequent Erratum currently in press in Physics Letters B (https://doi.org/10.1016/j.physletb.2019.134990

    Testing SUSY models of lepton flavor violation at a photon collider

    Full text link
    The loop level lepton flavor violating signals γγ→ℓℓ′(ℓ=e,μ,τ,ℓ≠ℓ′)\gamma \gamma \to \ell \ell' (\ell=e,\mu,\tau, \ell \neq \ell^\prime) are studied in a scenario of low-energy, R-parity conserving, supersymmetric seesaw mechanism within the context of a high energy photon collider. Lepton flavor violation is due to off diagonal elements in the left s-lepton mass matrix induced by renormalization group equations. The average slepton masses m~{\widetilde{m}} and the off diagonal matrix elements Δm\Delta m are treated as model independent free phenomenological parameters in order to discover regions in the parameter space where the signal cross section may be observable. At the energies of the γγ\gamma \gamma option of the future high-energy linear collider the signal has a potentially large standard model background, and therefore particular attention is paid to the study of kinematical cuts in order to reduce the latter at an acceptable level. We find, for the (eτe\tau) channel, non-negligible fractions of the parameter space (δLL=Δm2/m~2≳10−1\delta_{LL}=\Delta m^2/\widetilde{m}^2 \gtrsim 10^{-1}) where the statistical significance (SSSS) is SS≳3SS \gtrsim 3.Comment: 26 pages, 12 figures, Revtex

    Impact of internal bremsstrahlung on the detection of gamma-rays from neutralinos

    Full text link
    We present a detailed study of the effect of internal bremsstrahlung photons in the context of the minimal supersymmetric standard models and their impact on gamma-ray dark matter annihilation searches. We find that although this effect has to be included for the correct evaluation of fluxes of high energy photons from neutralino annihilation, its contribution is relevant only in models and at energies where the lines contribution is dominant over the secondary photons. Therefore, we find that the most optimistic supersymmetric scenarios for dark matter detection do not change significantly when including the internal bremsstrahlung. As an example, we review the gamma-ray dark matter detection prospects of the Draco dwarf spheroidal galaxy for the MAGIC stereoscopic system and the CTA project. Though the flux of high energy photons is enhanced by an order of magnitude in some regions of the parameter space, the expected fluxes are still much below the sensitivity of the instruments.Comment: 5 pages, twocolumn format, 3 figures:3 references added, accepted as Brief Report in PR
    • …
    corecore