235 research outputs found
Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth
peerreview_statement: The publishing and review policy for this title is described in its Aims & Scope. aims_and_scope_url: http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=bijp20The attached document is the author's final accepted/submitted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it
Characterising precipitate evolution in multi-component cast aluminium alloys using small-angle X-ray scattering
Aluminium alloys can be strengthened significantly by nano-scale precipitates that restrict dislocation movement. In this study, the evolution of inhomogenously distributed trialuminide precipitates in two multi component alloys was characterised by synchrotron small angle Xray scattering (SAXS). The appropriate selection of reference sample and data treatment required to successfully characterise a low volume fraction of precipitates in multi-component alloys via SAXS was investigated. The resulting SAXS study allowed the analysis of statistically significant numbers of precipitates (billions) as compared to electron microscopy (hundreds). Two cast aluminium alloys with different volume fractions of Al3ZrxV1-x precipitates were studied. Data analysis was conducted using direct evaluation methods on SAXS spectra and the results compared with those from transmission electron microscopy (TEM). Precipitates were found to attain a spherical structure with homogeneous chemical composition. Precipitate evolution was quantified, including size, size distribution, volume fraction and number density. The results provide evidence that these multi-component alloys have a short nucleation stage, with coarsening dominating precipitate size. The coarsening rate constant was calculated and compared to similar precipitate behaviour
Challenges Enrolling Children Into Traumatic Brain Injury Trials: An Observational Study
ObjectivesIn preparation for a clinical trial of therapeutic agents for children with moderate‐to‐severe blunt traumatic brain injuries (TBIs) in emergency departments (EDs), we conducted this feasibility study to (1) determine the number and clinical characteristics of eligible children, (2) determine the timing of patient and guardian arrival to the ED, and (3) describe the heterogeneity of TBIs on computed tomography (CT) scans.MethodsWe conducted a prospective observational study at 16 EDs of children ≤ 18 years of age presenting with blunt head trauma and Glasgow Coma Scale scores of 3–12. We documented the number of potentially eligible patients, timing of patient and guardian arrival, patient demographics and clinical characteristics, severity of injuries, and cranial CT findings.ResultsWe enrolled 295 eligible children at the 16 sites over 6 consecutive months. Cardiac arrest and nonsurvivable injuries were the most common characteristics that would exclude patients from a future trial. Most children arrived within 2 hours of injury, but most guardians did not arrive until 2–3 hours after the injury. There was a substantial range in types of TBIs, with subdural hemorrhages being the most common.ConclusionEnrolling children with moderate‐to‐severe TBI into time‐sensitive clinical trials will require large numbers of sites and meticulous preparation and coordination and will prove challenging to obtain informed consent given the timing of patient and guardian arrival. The Federal Exception from Informed Consent for Emergency Research will be an important consideration for enrolling these children.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/1/acem13085_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/2/acem13085.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135996/3/acem13085-sup-0001-DataSupplementS1.pd
EUSEDcollab: a network of data from European catchments to monitor net soil erosion by water
As a network of researchers we release an open-access database (EUSEDcollab) of water discharge and suspended sediment yield time series records collected in small to medium sized catchments in Europe. EUSEDcollab is compiled to overcome the scarcity of open-access data at relevant spatial scales for studies on runoff, soil loss by water erosion and sediment delivery. Multi-source measurement data from numerous researchers and institutions were harmonised into a common time series and metadata structure. Data reuse is facilitated through accompanying metadata descriptors providing background technical information for each monitoring station setup. Across ten European countries, EUSEDcollab covers over 1600 catchment years of data from 245 catchments at event (11 catchments), daily (22 catchments) and monthly (212 catchments) temporal resolution, and is unique in its focus on small to medium catchment drainage areas (median = 43 km(2), min = 0.04 km(2), max = 817 km(2)) with applicability for soil erosion research. We release this database with the aim of uniting people, knowledge and data through the European Union Soil Observatory (EUSO)
Defining the Ischemic Penumbra Using Magnetic Resonance Oxygen Metabolic Index
Penumbral biomarkers promise to individualize treatment windows in acute ischemic stroke. We used a novel MRI approach which measures oxygen metabolic index (OMI), a parameter closely related to PET-derived cerebral metabolic rate of oxygen utilization, to derive a pair of ischemic thresholds: (1) an irreversible-injury threshold which differentiates ischemic core from penumbra and (2) a reversible-injury threshold which differentiates penumbra from tissue not-at-risk for infarction
Soil erosion modelling: A global review and statistical analysis
To gain a better understanding of the global application of soil erosion prediction models, we comprehensivelyreviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the re-gions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv)how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To per-form this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. Theresulting database, named‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 indi-vidual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluatedand transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insightsinto the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to sup-port the upcoming country-based United Nations global soil-erosion assessment in addition to helping to informsoil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is anopen-source database available to the entire user-community to develop research, rectify errors, andmakefutureexpansion
Soil erosion modelling: A bibliometric analysis
Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication\u27s CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper
Widespread drying of European peatlands in recent centuries
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Climate warming and human impacts are thought to be causing peatlands to dry,potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope.
Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental Europe to examine changes in peatland surface wetness during the last 2000 years.
60% of our study sites were drier during the period CE 1800-2000 than they have been for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 24% of sites were drier than they have been for 2000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary between regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.Natural Environment Research Council (NERC
Species-specific, pan-European diameter increment models based on data of 2.3 million trees
ResearchBackground: Over the last decades, many forest simulators have been developed for the forests of individual
European countries. The underlying growth models are usually based on national datasets of varying size, obtained
from National Forest Inventories or from long-term research plots. Many of these models include country- and
location-specific predictors, such as site quality indices that may aggregate climate, soil properties and topography
effects. Consequently, it is not sensible to compare such models among countries, and it is often impossible to
apply models outside the region or country they were developed for. However, there is a clear need for more
generically applicable but still locally accurate and climate sensitive simulators at the European scale, which requires
the development of models that are applicable across the European continent. The purpose of this study is to
develop tree diameter increment models that are applicable at the European scale, but still locally accurate. We
compiled and used a dataset of diameter increment observations of over 2.3 million trees from 10 National Forest
Inventories in Europe and a set of 99 potential explanatory variables covering forest structure, weather, climate, soil
and nutrient deposition.
Results: Diameter increment models are presented for 20 species/species groups. Selection of explanatory variables
was done using a combination of forward and backward selection methods. The explained variance ranged from
10% to 53% depending on the species. Variables related to forest structure (basal area of the stand and relative size
of the tree) contributed most to the explained variance, but environmental variables were important to account for
spatial patterns. The type of environmental variables included differed greatly among species.
Conclusions: The presented diameter increment models are the first of their kind that are applicable at the
European scale. This is an important step towards the development of a new generation of forest development
simulators that can be applied at the European scale, but that are sensitive to variations in growing conditions and
applicable to a wider range of management systems than before. This allows European scale but detailed analyses
concerning topics like CO2 sequestration, wood mobilisation, long term impact of management, etcinfo:eu-repo/semantics/publishedVersio
Maternal prepregnancy body mass index and offspring white matter microstructure: results from three birth cohorts
Prepregnancy maternal obesity is a global health problem and has been associated with offspring
metabolic and mental ill-health. However, there is a knowledge gap in understanding potential neurobiological factors
related to these associations. This study explored the relation between maternal prepregnancy body mass index (BMI) and
offspring brain white matter microstructure at the age of 6, 10, and 26 years in three independent cohorts. Maternal BMI was associated with higher FA and lower MD in multiple brain tracts in offspring aged 10 and
26 years, but not at 6 years of age. Future studies should examine whether our observations can be replicated and explore the
potential causal nature of the findings.This work was supported by the European
Union’s Horizon 2020 research and innovation program [grant
agreement no. 633595 DynaHEALTH] and no. 733206 LifeCycle], the
Netherlands Organization for Health Research and Development
[ZONMW Vici project 016.VICI.170.200]. The PREOBE cohort was
funded by Spanish Ministry of Innovation and Science. Junta de
Andalucía: Excellence Projects (P06-CTS-02341) and Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01).
The first phase of the Generation R Study is made possible by financial
support from the Erasmus Medical Centre, the Erasmus University,
and the Netherlands Organization for Health Research and Development (ZonMW, grant ZonMW Geestkracht 10.000.1003). The
Northern Finland Birth Cohort 1986 is funded by University of Oulu,
University Hospital of Oulu, Academy of Finland (EGEA), Sigrid
Juselius Foundation, European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NIH/NIMH
(5R01MH63706:02
- …