149 research outputs found

    Caracterização físico-química da polpa de açaí de diferentes populações de açaizeiro.

    Get PDF
    Este trabalho teve como objetivo avaliar aspectos físico-químicos da polpa de açaí de 16 progênie

    Quantificação do teor de antocianinas totais da polpa de açaí de diferentes populações de açaizeiro.

    Get PDF
    bitstream/item/28193/1/BPD60.pdfDisponível também on-line

    Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury.

    Get PDF
    Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury

    Front Psychol

    Get PDF
    Polyphenols are naturally occurring organic compounds found in plants. Research suggests that their intake reduces the risk of cognitive decline and related dementias. Grapes and blueberries are polyphenol-rich foods that have attracted attention for their potential cognitive-enhancing effects. Examine the effects of supplementation with a standardized and patented polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment. Two-arm, 6 month, parallel-group, randomized, double-blind, placebo-controlled trial. One hundred and forty-three volunteers aged 60 to 80 years with mild cognitive impairment were supplemented with either 150 mg of Memophenol™, twice daily or a placebo. Outcome measures included computer-based cognitive tasks, the Behavior Rating Inventory of Executive Function (BRIEF-A), the Cognitive Failures Questionnaire, and the CASP-19. Compared to the placebo, Memophenol™ supplementation was associated with greater improvements in the speed of information processing ( = 0.020), visuospatial learning ( = 0.012), and the BRIEF-A global score ( = 0.046). However, there were no other statistically significant between-group differences in the performance of other assessed cognitive tests or self-report questionnaires. Memophenol™ supplementation was well-tolerated with no reports of significant adverse reactions. The promising results from this trial suggest that 6-months of supplementation with Memophenol™ may improve aspects of cognitive function in adults with mild cognitive impairment. Further research will be important to expand on the current findings and identify the potential mechanisms of action associated with the intake of this polyphenol-rich extract

    Metabolic stress promotes renal tubular inflammation by triggering the unfolded protein response

    Get PDF
    The renal epithelium contributes to the development of inflammation during ischemic injury. Ischemia induces endoplasmic reticulum (ER) stress and activates the unfolded protein response (UPR). Ischemic tissues generate distress signals and inflammation that activates fibrogenesis and may promote adaptive immunity. Interestingly, the UPR may activate inflammation pathways. Our aim was to test whether the UPR is activated during metabolic stress and mediates a tubular inflammatory response. Glucose deprivation, not hypoxia and amino acids deprivation, activated the UPR in human renal cortical tubular cells in culture. This stress activated NF-κB and promoted the transcription of proinflammatory cytokines and chemokines, including IL-6, IL-8, TNF-α, RANTES and MCP-1. The protein kinase RNA (PKR)-like ER kinase signaling pathway was not required for the induction of inflammation but amplified cytokine. Inositol-requiring enzyme 1 activated NF-κB signaling and was required for the transcription of proinflammatory cytokines and chemokines following metabolic stress. Moreover, acute ischemia activated ER stress and inflammation in rat kidneys. Finally, the ER stress marker GRP78 and NF-κB p65/RelA were coexpressed in human kidney transplants biopsies performed before implantation, suggesting that ER stress activates tubular inflammation in human renal allografts. In conclusion, this study establishes a link between ischemic stress, the activation of the UPR and the generation of a tubular inflammatory response
    corecore