1,396 research outputs found

    Dynamical suppression of telegraph and 1/f noise due to quantum bistable fluctuator

    Full text link
    We study dynamical decoupling of a qubit from non gaussian quantum noise due to discrete sources, as bistable fluctuators and 1/f noise. We obtain analytic and numerical results for generic operating point. For very large pulse frequency, where dynamic decoupling compensates decoherence, we found universal behavior. At intermediate frequencies noise can be compensated or enhanced, depending on the nature of the fluctuators and on the operating point. Our technique can be applied to a larger class of non-gaussian environments.Comment: Revtex 4, 5 pages, 3 figures. Title revised and some other minor changed. Final version as published in PR

    Characterization of coherent impurity effects in solid state qubits

    Full text link
    We propose a characterisation of the effects of bistable coherent impurities in solid state qubits. We introduce an effective impurity description in terms of a tunable spin-boson environment and solve the dynamics for the qubit coherences. The dominant rate characterizing the asymptotic time limit is identified and signatures of non-Gaussian behavior of the quantum impurity at intermediate times are pointed out. An alternative perspective considering the qubit as a measurement device for the spin-boson impurity is proposed.Comment: 4 pages, 5 figures. Replaced with published version, minor change

    Structured environments in solid state systems: crossover from Gaussian to non-Gaussian behavior

    Full text link
    The variety of noise sources typical of the solid state represents the main limitation toward the realization of controllable and reliable quantum nanocircuits, as those allowing quantum computation. Such ``structured environments'' are characterized by a non-monotonous noise spectrum sometimes showing resonances at selected frequencies. Here we focus on a prototype structured environment model: a two-state impurity linearly coupled to a dissipative harmonic bath. We identify the time scale separating Gaussian and non-Gaussian dynamical regimes of the Spin-Boson impurity. By using a path-integral approach we show that a qubit interacting with such a structured bath may probe the variety of environmental dynamical regimes.Comment: 8 pages, 9 figures. Proceedings of the DECONS '06 Conferenc

    ALMA polarization observations of the particle accelerators in the hot spot of the radio galaxy 3C 445

    Get PDF
    We present Atacama Large Millimeter Array (ALMA) polarization observations at 97.5 GHz of the southern hot spot of the radio galaxy 3C 445. The hot spot structure is dominated by two bright components enshrouded by diffuse emission. Both components show fractional polarization between 30 and 40 per cent, suggesting the presence of shocks. The polarized emission of the western component has a displacement of about 0.5 kpc outward with respect to the total intensity emission, and may trace the surface of a front shock. Strong polarization is observed in a thin strip marking the ridge of the hot spot structure visible from radio to optical. No significant polarization is detected in the diffuse emission between the main components, suggesting a highly disordered magnetic field likely produced by turbulence and instabilities in the downstream region that may be at the origin of the extended optical emission observed in this hot spot. The polarization properties support a scenario in which a combination of both multiple and intermittent shock fronts due to jet dithering, and spatially distributed stochastic second-order Fermi acceleration processes are present in the hot spot complex.Comment: 5 pages, 3 figures; accepted for publication in MNRAS Lette

    Decay of correlations in the dissipative two-state system

    Full text link
    We study the equilibrium correlation function of the polaron-dressed tunnelling operator in the dissipative two-state system and compare the asymptoptic dynamics with that of the position correlations. For an Ohmic spectral density with the damping strength K=1/2K=1/2, the correlation functions are obtained in analytic form for all times at any TT and any bias. For K<1K<1, the asymptotic dynamics is found by using a diagrammatic approach within a Coulomb gas representation. At T=0, the tunnelling or coherence correlations drop as t2Kt^{-2K}, whereas the position correlations show universal decay t2\propto t^{-2}. The former decay law is a signature of unscreened attractive charge-charge interactions, while the latter is due to unscreened dipole-dipole interactions.Comment: 5 pages, 5 figures, to be published in Europhys. Let

    Broadband noise decoherence in solid-state complex architectures

    Full text link
    Broadband noise represents a severe limitation towards the implementation of a solid-state quantum information processor. Considering common spectral forms, we propose a classification of noise sources based on the effects produced instead of on their microscopic origin. We illustrate a multi-stage approach to broadband noise which systematically includes only the relevant information on the environment, out of the huge parametrization needed for a microscopic description. We apply this technique to a solid-state two-qubit gate in a fixed coupling implementation scheme.Comment: Proceedings of Nobel Symposium 141: Qubits for Future Quantum Informatio

    Design of a Lambda system for population transfer in superconducting nanocircuits

    Get PDF
    The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only in the charge-phase regime. We find a number of results uniquely due to non-Markovianity of BBCN, namely: (a) the efficiency for STIRAP depends essentially on noise channels in the trapped subspace; (b) low-frequency fluctuations can be analyzed and represented as fictitious correlated fluctuations of the detunings of the external drives; (c) a simple figure of merit for design and operating prescriptions allowing the observation of STIRAP is proposed. The emerging physical picture also applies to other classes of coherent nanodevices subject to BBCN.Comment: 14 pages, 11 figure

    An Analytical Solution of the Advection Dispersion Equation in a Bounded Domain and Its Application to Laboratory Experiments

    Get PDF
    We study a uniform flow in a parallel plate geometry to model contaminant transport through a saturated porous medium in a semi-infinite domain in order to simulate an experimental apparatus mainly constituted by a chamber filled with a glass beads bed. The general solution of the advection dispersion equation in a porous medium was obtained by utilizing the Jacobiθ3Function. The analytical solution here presented has been provided when the inlet (Dirac) and the boundary conditions (Dirichelet, Neumann, and mixed types) are fixed. The proposed solution was used to study experimental data acquired by using a noninvasive technique
    corecore