102 research outputs found

    Slow sound laser in lined flow ducts

    Get PDF
    We consider the propagation of sound in a waveguide with an impedance wall. In the low frequency regime, the first effect of the impedance is to decrease the propagation speed of acoustic waves. Therefore, a flow in the duct can exceed the wave propagation speed at low Mach numbers, making it effectively supersonic. We analyze a setup where the impedance along the wall varies such that the duct is supersonic then subsonic in a finite region and supersonic again. In this specific configuration, the subsonic region act as a resonant cavity, and triggers a laser-like instability. We show that the instability is highly subwavelength. Besides, if the subsonic region is small enough, the instability is static. We also analyze the effect of a shear flow layer near the impedance wall. Although its presence significantly alter the instability, its main properties are maintained.Comment: 20 pages, 13 figures. V2: several clarifications added and Fig. 4 adde

    Perfect absorption of water waves by linear or nonlinear critical coupling

    Full text link
    We report on experiments of perfect absorption for surface gravity waves impinging a wall structured by a subwavelength resonator. By tuning the geometry of the resonator, a balance is achieved between the radiation damping and the intrinsic viscous damping, resulting in perfect absorption by critical coupling. Besides, it is shown that the resistance of the resonator, hence the intrinsic damping, can be controlled by the wave amplitude, which provides a way for perfect absorption tuned by nonlinear mechanisms. The perfect absorber that we propose, without moving parts or added material, is simple, robust and it presents a deeply subwavelength ratio wavelength/size 18\simeq 18
    corecore