199 research outputs found
Glimmers of a pre-geometric perspective
Space-time measurements and gravitational experiments are made by using
objects, matter fields or particles and their mutual relationships. As a
consequence, any operationally meaningful assertion about space-time is in fact
an assertion about the degrees of freedom of the matter (\emph{i.e} non
gravitational) fields; those, say for definiteness, of the Standard Model of
particle physics. As for any quantum theory, the dynamics of the matter fields
can be described in terms of a unitary evolution of a state vector in a Hilbert
space. By writing the Hilbert space as a generic tensor product of "subsystems"
we analyse the evolution of a state vector on an information theoretical basis
and attempt to recover the usual space-time relations from the information
exchanges between these subsystems. We consider generic interacting second
quantized models with a finite number of fermionic degrees of freedom and
characterize on physical grounds the tensor product structure associated with
the class of "localized systems" and therefore with "position". We find that in
the case of free theories no space-time relation is operationally definable. On
the contrary, by applying the same procedure to the simple interacting model of
a one-dimensional Heisenberg spin chain we recover the tensor product structure
usually associated with "position". Finally, we discuss the possible role of
gravity in this framework.Comment: 30 page
General relativistic Sagnac formula revised
The Sagnac effect is a time or phase shift observed between two beams of
light traveling in opposite directions in a rotating interferometer. We show
that the standard description of this effect within the framework of general
relativity misses the effect of deflection of light due to rotational inertial
forces. We derive the necessary modification and demonstrate it through a
detailed analysis of the square Sagnac interferometer rotating about its
symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac
interferometer in the synchronization procedure of remote clocks as well as its
analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure
Parity nonconserving cold neutron-parahydrogen interactions
Three pion dominated observables of the parity nonconserving interactions
between the cold neutrons and parahydrogen are calculated. The transversely
polarized neutron spin rotation, unpolarized neutron longitudinal polarization,
and photon-asymmetry of the radiative polarized neutron capture are considered.
For the numerical evaluation of the observables, the strong interactions are
taken into account by the Reid93 potential and the parity nonconserving
interactions by the DDH model along with the two-pion exchange.Comment: 17 pages, 2 figure
Neutrino Cooling of Neutron Stars. Medium effects
This review demonstrates that neutrino emission from dense hadronic component
in neutron stars is subject of strong modifications due to collective effects
in the nuclear matter. With the most important in-medium processes incorporated
in the cooling code an overall agreement with available soft X ray data can be
easily achieved. With these findings so called "standard" and "non-standard"
cooling scenarios are replaced by one general "nuclear medium cooling scenario"
which relates slow and rapid neutron star coolings to the star masses (interior
densities). In-medium effects take important part also at early hot stage of
neutron star evolution decreasing the neutrino opacity for less massive and
increasing for more massive neutron stars. A formalism for calculation of
neutrino radiation from nuclear matter is presented that treats on equal
footing one-nucleon and multiple-nucleon processes as well as reactions with
resonance bosons and condensates. Cooling history of neutron stars with quark
cores is also discussed.Comment: To be published in "Physics of Neutron Star Interiors", Eds. D.
Blaschke, N.K. Glendenning, A. Sedrakian, Springer, Heidelberg (2001
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics
Genesis and development of an interfluvial peatland in the central Congo Basin since the Late Pleistocene
The central Congo Basin contains the largest known peatland complex in the tropics. Here we present a detailed multi-proxy record from a peat core, CEN-17.4, from the centre of a 45 km wide interfluvial peatland (Ekolongouma), the first record of its kind from the central Congo peatlands. We use pollen, charcoal, sedimentological and geochemical data to reconstruct the site's history from the late Pleistocene to the present day. Peat began accumulating at the centre of the peatland ∼19,600 cal BP (∼17,500–20,400 cal BP, 95% confidence interval), and between ∼9500 (9430–9535 cal BP) and 10,500 (10,310–10,660 cal BP) cal BP towards the margins. Pollen data from the peatland centre show that an initial grass- and sedge-dominated vegetation, which burned frequently, was replaced by a Manilkara-type dominated flooded forest at ∼12,640 cal BP, replaced in turn by a more mixed swamp forest at ∼9670 cal BP. Mixed swamp forest vegetation has persisted to the present day, with variations in composition and canopy openness likely caused at least in part by changes in palaeo-precipitation. Stable isotope data (δDn-C29-v&icecorr) indicate a large reduction in precipitation beginning ∼5000 and peaking ∼2000 cal BP, associated with the near-complete mineralization of several metres of previously accumulated peat and with a transition to a drier, more heliophilic swamp forest assemblage, likely with a more open canopy. Although the peatland and associated vegetation recovered from this perturbation, the strong response to this climatic event underlines the ecosystem's sensitivity to changes in precipitation. We find no conclusive evidence for anthropogenic activity in our record; charcoal is abundant only in the Pleistocene part of the record and may reflect natural rather than anthropogenic fires. We conclude that autogenic succession and variation in the amount and seasonality of precipitation have been the most important drivers of ecological change in this peatland since the late Pleistocene
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
- …