10 research outputs found

    Internally coupled ears in living mammals.

    Get PDF
    It is generally held that the right and left middle ears of mammals are acoustically isolated from each other, such that mammals must rely on neural computation to derive sound localisation cues. There are, however, some unusual species in which the middle ear cavities intercommunicate, in which case each ear might be able to act as a pressure-difference receiver. This could improve sound localisation at lower frequencies. The platypus Ornithorhynchus is apparently unique among mammals in that its tympanic cavities are widely open to the pharynx, a morphology resembling that of some non-mammalian tetrapods. The right and left middle ear cavities of certain talpid and golden moles are connected through air passages within the basicranium; one experimental study on Talpa has shown that the middle ears are indeed acoustically coupled by these means. Having a basisphenoid component to the middle ear cavity walls could be an important prerequisite for the development of this form of interaural communication. Little is known about the hearing abilities of platypus, talpid and golden moles, but their audition may well be limited to relatively low frequencies. If so, these mammals could, in principle, benefit from the sound localisation cues available to them through internally coupled ears. Whether or not they actually do remains to be established experimentally.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00422-015-0675-

    The chinchilla microdialysis model for the study of antibiotic distribution to middle ear fluid

    No full text
    In cases of slow or limited penetration of an antibiotic to the site of infection such as in acute otitis media (the middle ear), plasma levels of the agent may not reflect the concentrations that are relevant in determining clinical outcome. There is a need for a model that allows prediction of the time-course of unbound, pharmacologically active drug levels in middle ear fluid (MEF). This article introduces microdialysis as a sampling tool to measure unbound antibiotic concentrations in the MEF of the chinchilla, and briefly summarizes the results of studies of MEF penetration of a cephalosporin, a macrolide, and a ketolide antibiotic using this technique. The general concurrence of preliminary results of the chinchilla studies with clinical findings suggests that the chinchilla microdialysis model may be useful in predicting efficacy in patients
    corecore