25 research outputs found

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography – comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    Genetic variants linked to education predict longevity

    Get PDF
    Educational attainment is associated with many health outcomes, including longevity. It is also known to be substantially heritable. Here, we used data from three large genetic epidemiology cohort studies (Generation Scotland, n = ∌17,000; UK Biobank, n = ∌115,000; and the Estonian Biobank, n = ∌6,000) to test whether education-linked genetic variants can predict lifespan length. We did so by using cohort members’ polygenic profile score for education to predict their parents’ longevity. Across the three cohorts, meta-analysis showed that a 1 SD higher polygenic education score was associated with ∌2.7% lower mortality risk for both mothers (total ndeaths = 79,702) and ∌2.4% lower risk for fathers (total ndeaths = 97,630). On average, the parents of offspring in the upper third of the polygenic score distribution lived 0.55 y longer compared with those of offspring in the lower third. Overall, these results indicate that the genetic contributions to educational attainment are useful in the prediction of human longevity.</p

    Type I interferon activation in RAS-associated autoimmune leukoproliferative disease (RALD)

    No full text
    RAS-associated autoimmune leukoproliferative disease (RALD) is a rare immune dysregulation syndrome caused by somatic gain-of-function mutations of either NRAS or KRAS gene in hematopoietic cells. We describe a 27-year-old patient presenting at 5 months of age with recurrent infections and generalized lymphadenopathy who developed a complex multi-organ autoimmune syndrome with hypogammaglobulinemia, partially controlled with oral steroids, hydroxichloroquine, mofetil mycophenolate and IVIG prophylaxis. Activation of type I interferon pathway was observed in peripheral blood. Since 18 years of age, the patient developed regenerative nodular hyperplasia of the liver evolving into hepatopulmonary syndrome. Whole exome sequencing analysis of the peripheral blood DNA showed the NRAS p.Gly13Asp mutation validated as somatic. Our report highlights the possibility of detecting somatic NRAS gene mutations in patients with inflammatory immune dysregulation and type I interferon activation
    corecore