44 research outputs found

    Aldosterone does not require angiotensin II to activate NCC through a WNK4–SPAK–dependent pathway

    Get PDF
    We and others have recently shown that angiotensin II can activate the sodium chloride cotransporter (NCC) through a WNK4–SPAK-dependent pathway. Because WNK4 was previously shown to be a negative regulator of NCC, it has been postulated that angiotensin II converts WNK4 to a positive regulator. Here, we ask whether aldosterone requires angiotensin II to activate NCC and if their effects are additive. To do so, we infused vehicle or aldosterone in adrenalectomized rats that also received the angiotensin receptor blocker losartan. In the presence of losartan, aldosterone was still capable of increasing total and phosphorylated NCC twofold to threefold. The kinases WNK4 and SPAK also increased with aldosterone and losartan. A dose-dependent relationship between aldosterone and NCC, SPAK, and WNK4 was identified, suggesting that these are aldosterone-sensitive proteins. As more functional evidence of increased NCC activity, we showed that rats receiving aldosterone and losartan had a significantly greater natriuretic response to hydrochlorothiazide than rats receiving losartan only. To study whether angiotensin II could have an additive effect, rats receiving aldosterone with losartan were compared with rats receiving aldosterone only. Rats receiving aldosterone only retained more sodium and had twofold to fourfold increase in phosphorylated NCC. Together, our results demonstrate that aldosterone does not require angiotensin II to activate NCC and that WNK4 appears to act as a positive regulator in this pathway. The additive effect of angiotensin II may favor electroneutral sodium reabsorption during hypovolemia and may contribute to hypertension in diseases with an activated renin–angiotensin–aldosterone system

    Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli

    Get PDF
    Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge

    The Role of Attention in a Joint-Action Effect

    Get PDF
    The most common explanation for joint-action effects has been the action co-representation account in which observation of another's action is represented within one's own action system. However, recent evidence has shown that the most prominent of these joint-action effects (i.e., the Social Simon effect), can occur when no co-actor is present. In the current work we examined whether another joint-action phenomenon (a movement congruency effect) can be induced when a participant performs their part of the task with a different effector to that of their co-actor and when a co-actor's action is replaced by an attention-capturing luminance signal. Contrary to what is predicted by the action co-representation account, results show that the basic movement congruency effect occurred in both situations. These findings challenge the action co-representation account of this particular effect and suggest instead that it is driven by bottom-up mechanisms

    Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Get PDF
    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-α, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with 99mTc or 111In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform ‘evidence-based biological therapy’ of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for therapy decision-making and follow-up

    Association of Low Baseline Levels of Erythrocyte Folate With Treatment Nonresponse at Three Months in Rheumatoid Arthritis Patients Receiving Methotrexate

    No full text
    ObjectiveTo investigate whether baseline concentrations of one-carbon metabolism biomarkers are associated with treatment nonresponse and adverse events in rheumatoid arthritis (RA) patients receiving methotrexate (MTX). MethodsA prospective derivation cohort (n = 285) and validation cohort (n = 102) of RA patients receiving MTX were studied. Concentrations of plasma homocysteine, serum vitamin B-12, serum folate, erythrocyte vitamin B-6, and erythrocyte folate were determined at baseline and after 3 months of treatment. Nonresponse after 3 months was assessed using the Disease Activity Score in 28 joints (DAS28) and the European League Against Rheumatism (EULAR) response criteria. Adverse events at 3 months wer ResultsIn the derivation cohort, the mean DAS28 scores at baseline and 3 months were 4.94 and 3.12, respectively, and 78% of patients experienced adverse events. This was similar between the 2 cohorts, despite a lower MTX dose in the validation cohort. Patients with lower levels of erythrocyte folate at baseline had a higher DAS28 at 3 months in both the derivation cohort ( = -0.15, P = 0.037) and the validation cohort ( = -0.20, P = 0.048). In line with these results, lower baseline erythrocyte ConclusionA low baseline concentration of erythrocyte folate is associated with high disease activity and nonresponse at 3 months after the start of MTX treatment and could be used in prediction models for MTX outcome. None of the investigated one-carbon metabolism biomarkers were associated with incidence of adverse events at 3 months

    Induction therapy with a combination of DMARDs is better than methotrexate monotherapy: first results of the tREACH trial

    No full text
    Objective To determine the most effective induction disease-modifying antirheumatic drug (DMARD) strategy in early rheumatoid arthritis (RA), second to compare one single dose of intramuscular glucocorticoids (GCs) with daily oral GCs during the induction phase. Methods The 3-month data of a single-blinded clinical trial in patients with recent-onset arthritis (tREACH) were used. Patients were included who had a high probability (>70%) of progressing to persistent arthritis, based on the prediction model of Visser. Patients were randomised into three induction therapy strategies: (A) combination therapy (methotrexate (MTX) + sulfasalazine + hydroxychloroquine) with GCs intramuscularly; (B) combination therapy with an oral GC tapering scheme and (C) MTX Results The Disease Activity Score (DAS) after 3 months was lower in patients receiving initial combination therapy than in those receiving MTX monotherapy (0.39 (0.67 to 0.11, 95% CI)). DAS did not differ between the different GC bridging treatments. After 3 months 50% fewer biological agents were prescribed in the combination therapy groups. Although the proportion of patients with medication adjustments differed significantly between the treatment arms, no differences were seen in these adjus Conclusion Triple DMARD induction therapy is better than MTX monotherapy in early RA. Furthermore, no differences were seen in medication adjustments due to adverse events after stratification for drug. Intramuscular and oral GCs are equally effective as bridging treatments and both can be used

    The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation

    Full text link
    SLC12A3 encodes the thiazide-sensitive sodium chloride cotransporter (NCC), which is primarily expressed in the kidney, but also in intestine and bone. In the kidney, NCC is located in the apical plasma membrane of epithelial cells in the distal convoluted tubule. Although NCC reabsorbs only 5 to 10 % of filtered sodium, it is important for the fine-tuning of renal sodium excretion in response to various hormonal and non-hormonal stimuli. Several new roles for NCC in the regulation of sodium, potassium, and blood pressure have been unraveled recently. For example, the recent discoveries that NCC is activated by angiotensin II but inhibited by dietary potassium shed light on how the kidney handles sodium during hypovolemia (high angiotensin II) and hyperkalemia. The additive effect of angiotensin II and aldosterone maximizes sodium reabsorption during hypovolemia, whereas the inhibitory effect of potassium on NCC increases delivery of sodium to the potassium-secreting portion of the nephron. In addition, great steps have been made in unraveling the molecular machinery that controls NCC. This complex network consists of kinases and ubiquitinases, including WNKs, SGK1, SPAK, Nedd4-2, Cullin-3, and Kelch-like 3. The pathophysiological significance of this network is illustrated by the fact that modification of each individual protein in the network changes NCC activity and results in salt-dependent hypotension or hypertension. This review aims to summarize these new insights in an integrated manner while identifying unanswered questions
    corecore