10 research outputs found

    Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition

    Get PDF
    BACKGROUND: Over the past several years our research group has taken a systematic, comprehensive approach to determining the effects on body function (hormonal and non-hormonal) of varying the amounts and types of proteins, carbohydrates and fats in the diet. We have been particularly interested in the dietary management of type 2 diabetes. Our objective has been to develop a diet for people with type 2 diabetes that does not require weight loss, oral agents, or insulin, but that still controls the blood glucose concentration. Our overall goal is to enable the person with type 2 diabetes to control their blood glucose by adjustment in the composition rather than the amount of food in their diet. METHODS: This paper is a brief summary and review of our recent diet-related research, and the rationale used in the development of diets that potentially are useful in the treatment of diabetes. RESULTS: We determined that, of the carbohydrates present in the diet, absorbed glucose is largely responsible for the food-induced increase in blood glucose concentration. We also determined that dietary protein increases insulin secretion and lowers blood glucose. Fat does not significantly affect blood glucose, but can affect insulin secretion and modify the absorption of carbohydrates. Based on these data, we tested the efficacy of diets with various protein:carbohydrate:fat ratios for 5 weeks on blood glucose control in people with untreated type 2 diabetes. The results were compared to those obtained in the same subjects after 5 weeks on a control diet with a protein:carbohydrate:fat ratio of 15:55:30. A 30:40:30 ratio diet resulted in a moderate but significant decrease in 24-hour integrated glucose area and % total glycohemoglobin (%tGHb). A 30:20:50 ratio diet resulted in a 38% decrease in 24-hour glucose area, a reduction in fasting glucose to near normal and a decrease in %tGHb from 9.8% to 7.6%. The response to a 30:30:40 ratio diet was similar. CONCLUSION: Altering the diet composition could be a patient-empowering method of improving the hyperglycemia of type 2 diabetes without weight loss or pharmacologic intervention

    Hormonal response to lipid and carbohydrate meals during the acute postprandial period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Optimizing the hormonal environment during the postprandial period in favor of increased anabolism is of interest to many active individuals. Data are conflicting regarding the acute hormonal response to high fat and high carbohydrate feedings. Moreover, to our knowledge, no studies have compared the acute hormonal response to ingestion of lipid and carbohydrate meals of different size.</p> <p>Methods</p> <p>We compared the hormonal response to lipid and carbohydrate meals of different caloric content during the acute postprandial period. Nine healthy men (22 ± 2 years) consumed in a random order, cross-over design one of four meals/beverages during the morning hours in a rested and fasted state: dextrose at 75 g (300 kcals), dextrose at 150 g (600 kcals), lipid at 33 g (300 kcals), lipid at 66 g (600 kcals). Blood samples were collected Pre meal, and at 0.5 hr, 1 hr, 2 hr, and 3 hr post meal. Samples were assayed for testosterone, cortisol, and insulin using ELISA techniques. Area under the curve (AUC) was calculated for each variable, and a 4 × 5 ANOVA was used to further analyze data.</p> <p>Results</p> <p>A meal × time effect (p = 0.0003) was noted for insulin, with values highest for the dextrose meals at the 0.5 hr and 1 hr times, and relatively unaffected by the lipid meals. No interaction (p = 0.98) or meal (p = 0.39) effect was noted for testosterone, nor was an interaction (p = 0.99) or meal (p = 0.65) effect noted for cortisol. However, a time effect was noted for both testosterone (p = 0.04) and cortisol (p < 0.0001), with values decreasing during the postprandial period. An AUC effect was noted for insulin (p = 0.001), with values higher for the dextrose meals compared to the lipid meals (p < 0.05). No AUC effect was noted for testosterone (p = 0.85) or cortisol (p = 0.84).</p> <p>Conclusions</p> <p>These data indicate that 1) little difference is noted in serum testosterone or cortisol during the acute postprandial period when healthy men consume lipid and dextrose meals of different size; 2) Both testosterone and cortisol experience a drop during the acute postprandial period, which is similar to what is expected based on the normal diurnal variation--feeding with lipid or dextrose meals does not appear to alter this pattern; 3) dextrose meals of either 75 g or 150 g result in a significant increase in serum insulin, in particular at 0.5 hr and 1 hr post-ingestion; 4) lipid meals have little impact on serum insulin.</p

    Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    No full text
    International audienceObjective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the isotope part, and the 13 other subjects were included in the glycemic part. On test days, subjects received biscuits (low glycemic index [GI], high slowly available glucose [SAG]) or extruded cereals (medium GI, low SAG) as part of a breakfast similar in terms of caloric and macronutrient content. The postprandial phase lasted 270 minutes. Results: The rate of appearance (RaE) of exogenous glucose was significantly lower after consumption of biscuits in the first part of the morning (90-150 minutes) than after consumption of extruded cereals (p 0.05). Conversely, at 210 minutes, it was significantly higher with biscuits (p 0.01). For the first 2hours, plasma glucose and insulin were significantly lower after biscuits during the glycemic part. C-peptide plasma concentrations were significantly lower at 90, 120, and 150 minutes after ingestion of the biscuits (p 0.05). Conclusion: The consumption of biscuits with a high content of slowly digestible starch reduces the appearance rate of glucose in the first part of the morning and prolongs this release in the late phase of the morning (210 minutes). Our results also emphasize that modulation of glucose availability at breakfast is an important factor for metabolic control throughout the morning in healthy subjects due to the lowering of blood glucose and insulin excursions

    Nutritional Management of Type 2 Diabetes Mellitus and Obesity and Pharmacologic Therapies to Facilitate Weight Loss

    No full text
    corecore