16 research outputs found
Individual-based modelling of the development and transport of a Karenia mikimotoi bloom on the North-West European continental shelf
In 2006, a large and prolonged bloom of the dinoflagellate Karenia mikimotoi occurred in Scottish coastal waters, causing extensive mortalities of benthic organisms including annelids and molluscs and some species of fish ( Davidson et al., 2009). A coupled hydrodynamic-algal transport model was developed to track the progression of the bloom around the Scottish coast during June–September 2006 and hence investigate the processes controlling the bloom dynamics. Within this individual-based model, cells were capable of growth, mortality and phototaxis and were transported by physical processes of advection and turbulent diffusion, using current velocities extracted from operational simulations of the MRCS ocean circulation model of the North-west European continental shelf. Vertical and horizontal turbulent diffusion of cells are treated using a random walk approach. Comparison of model output with remotely sensed chlorophyll concentrations and cell counts from coastal monitoring stations indicated that it was necessary to include multiple spatially distinct seed populations of K. mikimotoi at separate locations on the shelf edge to capture the qualitative pattern of bloom transport and development. We interpret this as indicating that the source population was being transported northwards by the Hebridean slope current from where colonies of K. mikimotoi were injected onto the continental shelf by eddies or other transient exchange processes. The model was used to investigate the effects on simulated K. mikimotoi transport and dispersal of: (1) the distribution of the initial seed population; (2) algal growth and mortality; (3) water temperature; (4) the vertical movement of particles by diurnal migration and eddy diffusion; (5) the relative role of the shelf edge and coastal currents; (6) the role of wind forcing. The numerical experiments emphasized the requirement for a physiologically based biological model and indicated that improved modelling of future blooms will potentially benefit from better parameterisation of temperature dependence of both growth and mortality and finer spatial and temporal hydrodynamic resolution
A preliminary investigation of basin water response to climate forcing in a Scottish fjord: evaluating the influence of the NAO
The sea lochs (fjords) of NW Scotland bridge the land-ocean interface in a region of Europe which is particularly well situated to monitor changes in westerly air streams. Inter-annual atmospheric circulation changes at this latitude are largely governed by the North Atlantic Oscillation (NAO). Comparing two recent extreme NAO years, a two-dimensional model of Loch Sunart, NW Scotland, is used to examine the potential effects of climate oscillations on the magnitude and frequency of deep-water renewal events and the resulting water properties in the fjord basins. In the upper basin of the fjord, meteorological forcing during the high NAO index year (1988-89) resulted in less-frequent deep-water renewal, greater variability in basin salinity and a lower annual-mean salinity (by 0.52) than that predicted for the low NAO index year (1995-96). In the main basin, variations in meteorological forcing had much less effect on basin water properties. In both basins, predicted deep water inflow was significantly greater during the negative phase NAO, with annual inflow to the upper and main basins being respectively 50% and 300% greater during 1995-96 relative to 1988-99. Through a sensitivity analysis, the NAO is shown to affect upper basin water properties through the influence of low-frequency anomalies in the meteorological forcing, particularly the enhanced westerly wind stress associated with positive phases, which inhibits deep water renewal over the winter months. The salinity of the main and upper basins respond differently to the boundary forcing due to differential tidal mixing above the respectively sub- and super-critical entrance sills. Predictions of basin water isotope ratios are made by applying the salinity: delta O-18(water) mixing line for the region to the salinity results; the combination of the weak dependence of delta O-18(water) on salinity and the stable salinity predicted for the main basin suggests that some fjord basins may provide ideal sites for palaeotemperature studies. (c) 2004 Elsevier Ltd. All rights reserved.</p
A preliminary investigation of basin water response to climate forcing in a Scottish fjord: evaluating the influence of the NAO
The sea lochs (fjords) of NW Scotland bridge the land-ocean interface in a region of Europe which is particularly well situated to monitor changes in westerly air streams. Inter-annual atmospheric circulation changes at this latitude are largely governed by the North Atlantic Oscillation (NAO). Comparing two recent extreme NAO years, a two-dimensional model of Loch Sunart, NW Scotland, is used to examine the potential effects of climate oscillations on the magnitude and frequency of deep-water renewal events and the resulting water properties in the fjord basins. In the upper basin of the fjord, meteorological forcing during the high NAO index year (1988-89) resulted in less-frequent deep-water renewal, greater variability in basin salinity and a lower annual-mean salinity (by 0.52) than that predicted for the low NAO index year (1995-96). In the main basin, variations in meteorological forcing had much less effect on basin water properties. In both basins, predicted deep water inflow was significantly greater during the negative phase NAO, with annual inflow to the upper and main basins being respectively 50% and 300% greater during 1995-96 relative to 1988-99. Through a sensitivity analysis, the NAO is shown to affect upper basin water properties through the influence of low-frequency anomalies in the meteorological forcing, particularly the enhanced westerly wind stress associated with positive phases, which inhibits deep water renewal over the winter months. The salinity of the main and upper basins respond differently to the boundary forcing due to differential tidal mixing above the respectively sub- and super-critical entrance sills. Predictions of basin water isotope ratios are made by applying the salinity: delta O-18(water) mixing line for the region to the salinity results; the combination of the weak dependence of delta O-18(water) on salinity and the stable salinity predicted for the main basin suggests that some fjord basins may provide ideal sites for palaeotemperature studies. (c) 2004 Elsevier Ltd. All rights reserved.</p
Effect of water depth and the bottom boundary layer upon internal wave generation over abrupt topography
The role of water depth and bottom boundary layer turbulence upon lee-wave generation in sill regions is examined. Their effect upon vertical mixing is also considered. Calculations are performed using a non-hydrostatic model in cross-section form with a specified tidal forcing. Initial calculations in deeper water and a sill height such that the sill top is well removed from the surrounding bed region showed that downstream lee-wave generation and associated mixing increased as bottom friction coefficient k increased. This was associated with an increase in current shear across the sill. However, for a given k, increasing vertical eddy viscosity A (v) reduced vertical shear in the across sill velocity, leading to a reduction in lee-wave amplitude and associated mixing. Subsequent calculations using shallower water showed that for a given k and A (v,) lee-wave generation was reduced due to the shallower water depth and changes in the bottom boundary layer. However, in this case (unlike in the deepwater case), there is an appreciable bottom current. This gives rise to bottom mixing which in shallow water extends to mid-depth and enhances the mid-water mixing that is found on the lee side of the sill. Final calculations with deeper water but small sill height showed that lee waves could propagate over the sill, thereby reducing their contribution to mixing. In this case, bottom mixing was the major source of mixing which was mainly confined to the near bed region, with little mid-water mixin
Tidal mixing in sill regions: influence of sill depth and aspect ratio
A non-hydrostatic model in cross-sectional form with an idealized sill is used to examine the influence of sill depth (h s) and aspect ratio upon internal motion. The model is forced with a barotropic tide and internal waves and mixing occurs at the sill. Calculations using a wide sill and quantifying the response using power spectra show that for a given tidal forcing namely Froude number F r as the sill depth (h s) increases the lee wave response and vertical mixing decrease. This is because of a reduction in across sill velocity U s due to increased depth. Calculations show that the sill Froude number F s based on sill depth and across sill velocity is one parameter that controls the response at the sill. At low F s (namely F s ≪ 1) in the wide sill case, there is little lee wave production, and the response is in terms of internal tides. At high F s, calculations with a narrow sill show that for a given F s value, the lee wave response and internal mixing increase with increasing aspect ratio. Calculations using a narrow sill with constant U s show that for small values of h s, a near surface mixed layer can occur on the downstream side of the sill. For large values of h s, a thick well-mixed bottom boundary layer occurs due to turbulence produced by the lee waves at the seabed. For intermediate values of h s, “internal mixing” dominates the solution and controls across thermocline mixin