17 research outputs found

    EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity

    Get PDF
    Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall

    Host-Detrimental Role of Esx-1-Mediated Inflammasome Activation in Mycobacterial Infection

    Get PDF
    The Esx-1 (type VII) secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium marinum. However, the molecular events and host-pathogen interactions underlying Esx-1-mediated virulence in vivo remain unclear. Here we address this problem in a non-lethal mouse model of M. marinum infection that allows detailed quantitative analysis of disease progression. M. marinum established local infection in mouse tails, with Esx-1-dependent formation of caseating granulomas similar to those formed in human tuberculosis, and bone deterioration reminiscent of skeletal tuberculosis. Analysis of tails infected with wild type or Esx-1-deficient bacteria showed that Esx-1 enhanced generation of proinflammatory cytokines, including the secreted form of IL-1β, suggesting that Esx-1 promotes inflammasome activation in vivo. In vitro experiments indicated that Esx-1-dependent inflammasome activation required the host NLRP3 and ASC proteins. Infection of wild type and ASC-deficient mice demonstrated that Esx-1-dependent inflammasome activation exacerbated disease without restricting bacterial growth, indicating a host-detrimental role of this inflammatory pathway in mycobacterial infection. These findings define an immunoregulatory role for Esx-1 in a specific host-pathogen interaction in vivo, and indicate that the Esx-1 secretion system promotes disease and inflammation through its ability to activate the inflammasome

    Contrasting Transcriptional Responses of a Virulent and an Attenuated Strain of Mycobacterium tuberculosis Infecting Macrophages

    Get PDF
    Along with the recent identification of single nucleotide polymorphisms in H37Ra when compared to H37Rv, our demonstration of differential expression of PhoP-regulated and ESX-1 region-related genes during macrophage infection further highlights the significance of these genes in the attenuation of H37Ra

    Cholera- and Anthrax-Like Toxins Are among Several New ADP-Ribosyltransferases

    Get PDF
    Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences – including a primary sequence pattern – to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data – and we need high-throughput validation – our approach provides insight into the newest toxin ADP-ribosyltransferases

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p
    corecore