2 research outputs found

    Beyond Refugia: New insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America

    Full text link
    Haffer’s (Science 165: 131–137, 1969) Pleistocene refuge theory has provided motivation for 50 years of investigation into the connections between climate, biome dynamics, and neotropical speciation, although aspects of the orig- inal theory are not supported by subsequent studies. Recent advances in paleocli- matology suggest the need for reevaluating the role of Quaternary climate on evolutionary history in tropical South America. In addition to the many repeated large-amplitude climate changes associated with Pleistocene glacial-interglacial stages (~40 kyr and 100 kyr cyclicity), we highlight two aspects of Quaternary climate change in tropical South America: (1) an east-west precipitation dipole, induced by solar radiation changes associated with Earth’s precessional variations (~20 kyr cyclicity); and (2) periods of anomalously high precipitation that persisted for centuries-to-millennia (return frequencies ~1500 years) congruent with cold “Heinrich events” and cold Dansgaard-Oeschger “stadials” of the North Atlantic region. The spatial footprint of precipitation increase due to this North Atlantic forcing extended across almost all of tropical South America south of the equator. Combined, these three climate modes present a picture of climate change with different spatial and temporal patterns than envisioned in the original Pleistocene refuge theory. Responding to these climate changes, biomes expanded and contracted and became respectively connected and disjunct. Biome change undoubtedly influenced biotic diversification, but the nature of diversification likely was more complex than envisioned by the original Pleistocene refuge theory. In the lowlands, intermittent forest expansion and contraction led to species dispersal and subsequent isolation, promoting lineage diversification. These pulses of climate-driven biotic interchange profoundly altered the composition of regional species pools and triggered new evolutionary radiations. In the special case of the tropical Andean forests adjacent to the Amazon lowlands, new phylogenetic data provide abundant evidence for rapid biotic diversification during the Pleistocene. During warm interglacials and intersta- dials, lowland taxa dispersed upslope. Isolation in these disjunct climate refugia led to extinction for some taxa and speciation for others.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155561/1/Baker2020.pdfDescription of Baker2020.pdf : Main articl

    The last three millions of unequal spring thaws

    No full text
    Evidence from various climate proxies provides us with increasingly reliable proof that only in the past 10 millennia were natural systems more or less as we see them at the present (without considering human impact). Prior to 10,000 years ago, natural systems repeatedly changed under the influence of an unstable climate. This is particularly true over the last one million years. During these times, terrestrial environments were populated by a diversity of large animals that did not survive either the last dramatic climate change or the increasing power of humans. The volume of continental ice covering the land and its impact on the planet’s physiography∗ and vegetation have varied consistently. We can try to imagine extreme conditions: the very cold springtimes of the full glacials∗, and the warm springtimes of the rapid deglaciation phases, with enormous volumes of water feeding terrifying rivers. Most of this story is frozen in the ice cover of Greenland and Antarctica, the deep layers of which have been reached by human coring activities only over the past half century. Shorter cores have been drilled in high-altitude ice caps (e.g., in the Andes) that provide insight into other parts of the planet. The interpretation of the signals locked into the ice cores led to the reconstruction of climatic curves covering approximately the past 800 millennia. In addition, long sediment cores have been recovered from thousands of lakes across the globe and yielded data useful to estimate climatic trends based on pollen* records. In the past one to three million years, the continents and oceans were in roughly their present-day locations. Environmental factors, including tectonics (mountain uplift or closure of ocean gateways), interacted with the overall long-term oscillation in atmospheric carbon-dioxide concentration, which, in turn, influenced vegetation cover and ecosystem composition. Well-established glacial-interglacial∗ cycles impacted biotic dispersal∗ events at mid-to-high latitudes and determined the geographical restriction and expansion of tropical and subtropical (warm-temperate) biomes around the globe. This book chapter constitutes an imaginary field trip, presenting the reader with exemplary records of environments, plants, large mammals, and hominins impacted by cooling and warming phases, glaciations, changes in rainfall patterns, and sea level culminating in the world of today
    corecore