1 research outputs found

    Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements

    Full text link
    A generic model of stochastic autocatalytic dynamics with many degrees of freedom wiw_i i=1,...,Ni=1,...,N is studied using computer simulations. The time evolution of the wiw_i's combines a random multiplicative dynamics wi(t+1)=λwi(t)w_i(t+1) = \lambda w_i(t) at the individual level with a global coupling through a constraint which does not allow the wiw_i's to fall below a lower cutoff given by c⋅wˉc \cdot \bar w, where wˉ\bar w is their momentary average and 0<c<10<c<1 is a constant. The dynamic variables wiw_i are found to exhibit a power-law distribution of the form p(w)∼w−1−αp(w) \sim w^{-1-\alpha}. The exponent α(c,N)\alpha (c,N) is quite insensitive to the distribution Π(λ)\Pi(\lambda) of the random factor λ\lambda, but it is non-universal, and increases monotonically as a function of cc. The "thermodynamic" limit, N goes to infty and the limit of decoupled free multiplicative random walks c goes to 0, do not commute: α(0,N)=0\alpha(0,N) = 0 for any finite NN while α(c,∞)≥1 \alpha(c,\infty) \ge 1 (which is the common range in empirical systems) for any positive cc. The time evolution of wˉ(t){\bar w (t)} exhibits intermittent fluctuations parametrized by a (truncated) L\'evy-stable distribution Lα(r)L_{\alpha}(r) with the same index α\alpha. This non-trivial relation between the distribution of the wiw_i's at a given time and the temporal fluctuations of their average is examined and its relevance to empirical systems is discussed.Comment: 7 pages, 4 figure
    corecore