27 research outputs found

    Total Cross Sections for Neutron Scattering

    Get PDF
    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from 16^{16}O and 40^{40}Ca are calculated as a function of energy from 50−70050-700~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig

    Electroproduction of the d* dibaryon

    Full text link
    The unpolarized cross section for the electroproduction of the isoscalar Jπ=3+J^\pi = 3^+ di-delta dibaryon d∗d^* is calculated for deuteron target using a simple picture of elastic electron-baryon scattering from the ΔΔ(7D1)\Delta \Delta (^7D_1) and the NN(3S1)NN (^3S_1) components of the deuteron. The calculated differential cross section at the electron lab energy of 1 GeV has the value of about 0.24 (0.05) nb/sr at the lab angle of 10∘^\circ (30∘^\circ) for the Bonn B potential when the dibaryon mass is taken to be 2.1 GeV. The cross section decreases rapidly with increasing dibaryon mass. A large calculated width of 40 MeV for d∗(ΔΔ7S3)d^*(\Delta\Delta ^7S_3) combined with a small experimental upper bound of 0.08 MeV for the d∗d^* decay width appears to have excluded any low-mass d∗d^* model containing a significant admixture of the ΔΔ(7S3)\Delta\Delta (^7S_3) configuration.Comment: 11 journal-style pages, 8 figure

    pi-NN Coupling Constants from NN Elastic Data between 210 and 800 Mev

    Full text link
    High partial waves for pppp and npnp elastic scattering are examined critically from 210 to 800 MeV. Non-OPE contributions are compared with predictions from theory. There are some discrepancies, but sufficient agreement that values of the πNN\pi NN coupling constants g02g_0^2 for π0\pi ^0 exchange and gc2g^2_{c} for charged π\pi exchange can be derived. Results are g02=13.91±0.13±0.07g^2_0 = 13.91 \pm 0.13 \pm 0.07 and gc2=13.69±0.15±0.24g^2_c = 13.69 \pm 0.15 \pm 0.24, where the first error is statistical and the second is an estimate of the likely systematic error, arising mostly from uncertainties in the normalisation of total cross sections and dσ/dΩd\sigma/d\Omega.Comment: 21 pages of LaTeX, UI-NTH-940

    Antimatter Regions in the Early Universe and Big Bang Nucleosynthesis

    Get PDF
    We have studied big bang nucleosynthesis in the presence of regions of antimatter. Depending on the distance scale of the antimatter region, and thus the epoch of their annihilation, the amount of antimatter in the early universe is constrained by the observed abundances. Small regions, which annihilate after weak freezeout but before nucleosynthesis, lead to a reduction in the 4He yield, because of neutron annihilation. Large regions, which annihilate after nucleosynthesis, lead to an increased 3He yield. Deuterium production is also affected but not as much. The three most important production mechanisms of 3He are 1) photodisintegration of 4He by the annihilation radiation, 2) pbar-4He annihilation, and 3) nbar-4He annihilation by "secondary" antineutrons produced in anti-4He annihilation. Although pbar-4He annihilation produces more 3He than the secondary nbar-4He annihilation, the products of the latter survive later annihilation much better, since they are distributed further away from the annihilation zone.Comment: 15 pages, 9 figures. Minor changes to match the PRD versio
    corecore