6 research outputs found
Self Consistent Molecular Field Theory for Packing in Classical Liquids
Building on a quasi-chemical formulation of solution theory, this paper
proposes a self consistent molecular field theory for packing problems in
classical liquids, and tests the theoretical predictions for the excess
chemical potential of the hard sphere fluid. Results are given for the self
consistent molecular fields obtained, and for the probabilities of occupancy of
a molecular observation volume. For this system, the excess chemical potential
predicted is as accurate as the most accurate prior theories, particularly the
scaled particle (Percus-Yevick compressibility) theory. It is argued that the
present approach is particularly simple, and should provide a basis for a
molecular-scale description of more complex solutions.Comment: 6 pages and 5 figure
Theoretical description of phase coexistence in model C60
We have investigated the phase diagram of the Girifalco model of C60
fullerene in the framework provided by the MHNC and the SCOZA liquid state
theories, and by a Perturbation Theory (PT), for the free energy of the solid
phase. We present an extended assessment of such theories as set against a
recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys.
118:304 (2003)]. We have compared the theoretical predictions with the
corresponding simulation results for several thermodynamic properties. Then we
have determined the phase diagram of the model, by using either the SCOZA, or
the MHNC, or the PT predictions for one of the coexisting phases, and the
simulation data for the other phase, in order to separately ascertain the
accuracy of each theory. It turns out that the overall appearance of the phase
portrait is reproduced fairly well by all theories, with remarkable accuracy as
for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA
results for the liquid-vapor coexistence, as well as for the corresponding
critical points, are quite accurate. All results are discussed in terms of the
basic assumptions underlying each theory. We have selected the MHNC for the
fluid and the first-order PT for the solid phase, as the most accurate tools to
investigate the phase behavior of the model in terms of purely theoretical
approaches. The overall results appear as a robust benchmark for further
theoretical investigations on higher order C(n>60) fullerenes, as well as on
other fullerene-related materials, whose description can be based on a
modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.