34 research outputs found
Complex Physics in Cluster Cores: Showstopper for the Use of Clusters for Cosmology?
The influence of cool galaxy cluster cores on the X-ray
luminosity--gravitational mass relation is studied with Chandra observations of
64 clusters in the HIFLUGCS sample. As preliminary results we find (i) a
significant offset of cool core (CC) clusters to the high luminosity (or low
mass) side compared to non-cool core (NCC) clusters, (ii) a smaller scatter of
CC clusters compared to NCC clusters, (iii) a decreasing fraction of CC
clusters with increasing cluster mass, (iv) a reduced scatter in the
luminosity--mass relation for the entire sample if the luminosity is scaled
properly with the central entropy. The implications of these results on the
intrinsic scatter are discussed.Comment: 6 pages; to appear in the proceedings of the conference Heating vs.
Cooling in Galaxies and Clusters of Galaxies, edited by H. Boehringer, P.
Schuecker, G.W. Pratt, and A. Finoguenov. Dedicated to the memory of Peter
Schuecke
Dark Energy and the quietness of the Local Hubble Flow
The linearity and quietness of the Local () Hubble Flow (LHF) in
view of the very clumpy local universe is a long standing puzzle in standard
and in open CDM cosmogony. The question addressed in this paper is whether the
antigravity component of the recently discovered dark energy can cool the
velocity flow enough to provide a solution to this puzzle. We calculate the
growth of matter fluctuations in a flat universe containing a fraction
of dark energy obeying the time independent equation of state
. We find that dark energy can indeed cool the LHF. However the
dark energy parameter values required to make the predicted velocity dispersion
consistent with the observed value have been ruled out
by other observational tests constraining the dark energy parameters and
. Therefore despite the claims of recent qualitative studies dark
energy with time independent equation of state can not by itself explain the
quietness and linearity of the Local Hubble Flow.Comment: 4 pages, 3 figures, accepted in Phys. Rev. D. Minor corrections, one
figure adde
Cluster Masses Accounting for Structure along the Line of Sight
Weak gravitational lensing of background galaxies by foreground clusters
offers an excellent opportunity to measure cluster masses directly without
using gas as a probe. One source of noise which seems difficult to avoid is
large scale structure along the line of sight. Here I show that, by using
standard map-making techniques, one can minimize the deleterious effects of
this noise. The resulting uncertainties on cluster masses are significantly
smaller than when large scale structure is not properly accounted for, although
still larger than if it was absent altogether.Comment: 5 pages, 5 figure
The imprint of the interaction between dark sectors in galaxy clusters
Based on perturbation theory, we study the dynamics of how dark matter and
dark energy in the collapsing system approach dynamical equilibrium while
interacting. We find that the interaction between dark sectors cannot ensure
the dark energy to fully cluster along with dark, leading to the energy
non-conservation problem in the collapsing system We examine the cluster number
counts dependence on the interaction between dark sectors. Furthermore, we
analyze how dark energy inhomogeneities affect cluster abundances. It is shown
that cluster number counts can provide specific signature of dark sectors
interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the
structure formation in the spherical collapsing system where DE does not
cluster together with DM. Accepted for publication in JCA
Quinstant Dark Energy Predictions for Structure Formation
We explore the predictions of a class of dark energy models, quinstant dark
energy, concerning the structure formation in the Universe, both in the linear
and non-linear regimes. Quinstant dark energy is considered to be formed by
quintessence and a negative cosmological constant. We conclude that these
models give good predictions for structure formation in the linear regime, but
fail to do so in the non-linear one, for redshifts larger than one.Comment: 9 pages, 14 figures, "Accepted for publication in Astrophysics &
Space Science
The imprint of the interaction between dark sectors in galaxy clusters
Based on perturbation theory, we study the dynamics of how dark matter and
dark energy in the collapsing system approach dynamical equilibrium while
interacting. We find that the interaction between dark sectors cannot ensure
the dark energy to fully cluster along with dark, leading to the energy
non-conservation problem in the collapsing system We examine the cluster number
counts dependence on the interaction between dark sectors. Furthermore, we
analyze how dark energy inhomogeneities affect cluster abundances. It is shown
that cluster number counts can provide specific signature of dark sectors
interaction and dark energy inhomogeneities.Comment: revised version. New treatment has been provided on studying the
structure formation in the spherical collapsing system where DE does not
cluster together with DM. Accepted for publication in JCA
Large Scale Pressure Fluctuations and Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect associated with pressure fluctuations of
the large scale structure gas distribution will be probed with current and
upcoming wide-field small angular scale cosmic microwave background
experiments. We study the generation of pressure fluctuations by baryons which
are present in virialized dark matter halos and by baryons present in small
overdensities. For collapsed halos, assuming the gas distribution is in
hydrostatic equilibrium with matter density distribution, we predict the
pressure power spectrum and bispectrum associated with the large scale
structure gas distribution by extending the dark matter halo approach which
describes the density field in terms of correlations between and within halos.
The projected pressure power spectrum allows a determination of the resulting
SZ power spectrum due to virialized structures. The unshocked photoionized
baryons present in smaller overdensities trace the Jeans-scale smoothed dark
matter distribution. They provide a lower limit to the SZ effect due to large
scale structure in the absence of massive collapsed halos. We extend our
calculations to discuss higher order statistics, such as bispectrum and
skewness in SZ data. The SZ-weak lensing cross-correlation is suggested as a
probe of correlations between dark matter and baryon density fields, while the
probability distribution functions of peak statistics of SZ halos in wide field
CMB data can be used as a probe of cosmology and non-Gaussian evolution of
large scale structure pressure fluctuations.Comment: 16 pages, 9 figures; Revised with expanded discussions. Phys. Rev. D.
(in press
Planck-scale quintessence and the physics of structure formation
In a recent paper we considered the possibility of a scalar field providing
an explanation for the cosmic acceleration. Our model had the interesting
properties of attractor-like behavior and having its parameters of O(1) in
Planck units. Here we discuss the effect of the field on large scale structure
and CMB anisotropies. We show how some versions of our model inspired by
"brane" physics have novel features due to the fact that the scalar field has a
significant role over a wider range of redshifts than for typical "dark energy"
models. One of these features is the additional suppression of the formation of
large scale structure, as compared with cosmological constant models. In light
of the new pressures being placed on cosmological parameters (in particular
H_0) by CMB data, this added suppression allows our "brane" models to give
excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories
We present cosmological perturbations of kinetic components based on
relativistic Boltzmann equations in the context of generalized gravity
theories. Our general theory considers an arbitrary number of scalar fields
generally coupled with the gravity, an arbitrary number of mutually interacting
hydrodynamic fluids, and components described by the relativistic Boltzmann
equations like massive/massless collisionless particles and the photon with the
accompanying polarizations. We also include direct interactions among fluids
and fields. The background FLRW model includes the general spatial curvature
and the cosmological constant. We consider three different types of
perturbations, and all the scalar-type perturbation equations are arranged in a
gauge-ready form so that one can implement easily the convenient gauge
conditions depending on the situation. In the numerical calculation of the
Boltzmann equations we have implemented four different gauge conditions in a
gauge-ready manner where two of them are new. By comparing solutions solved
separately in different gauge conditions we can naturally check the numerical
accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
