320 research outputs found
A New Look at Mode Conversion in a Stratified Isothermal Atmosphere
Recent numerical investigations of wave propagation near coronal magnetic
null points (McLaughlin and Hood: Astron. Astrophys. 459, 641,2006) have
indicated how a fast MHD wave partially converts into a slow MHD wave as the
disturbance passes from a low-beta plasma to a high-beta plasma. This is a
complex process and a clear understanding of the conversion mechanism requires
the detailed investigation of a simpler model. An investigation of mode
conversion in a stratified, isothermal atmosphere, with a uniform, vertical
magnetic field is carried out, both numerically and analytically. In contrast
to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov:
Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this
paper studies the downward propagation of waves from a low-beta to high-beta
environment. A simple expression for the amplitude of the transmitted wave is
compared with the numerical solution.Comment: 14 pages, 6 figure
Stokes Diagnostis of 2D MHD-simulated Solar Magnetogranulation
We study the properties of solar magnetic fields on scales less than the
spatial resolution of solar telescopes. A synthetic infrared
spectropolarimetric diagnostics based on a 2D MHD simulation of
magnetoconvection is used for this. We analyze two time sequences of snapshots
that likely represent two regions of the network fields with their immediate
surrounding on the solar surface with the unsigned magnetic flux density of 300
and 140 G. In the first region we find from probability density functions of
the magnetic field strength that the most probable field strength at logtau_5=0
is equal to 250 G. Weak fields (B < 500 G) occupy about 70% of the surface,
while stronger fields (B 1000 G) occupy only 9.7% of the surface. The magnetic
flux is -28 G and its imbalance is -0.04. In the second region, these
parameters are correspondingly equal to 150 G, 93.3 %, 0.3 %, -40 G, and -0.10.
We estimate the distribution of line-of-sight velocities on the surface of log
tau_5=-1. The mean velocity is equal to 0.4 km/s in the first simulated region.
The averaged velocity in the granules is -1.2 km/s and in the intergranules is
2.5 km/s. In the second region, the corresponding values of the mean velocities
are equal to 0, -1.8, 1.5 km/s. In addition we analyze the asymmetry of
synthetic Stokes-V profiles of the Fe I 1564.8 nm line. The mean values of the
amplitude and area asymmetry do not exceed 1%. The spatially smoothed amplitude
asymmetry is increased to 10% while the area asymmetry is only slightly varied.Comment: 24 pages, 12 figure
Active region formation through the negative effective magnetic pressure instability
The negative effective magnetic pressure instability operates on scales
encompassing many turbulent eddies and is here discussed in connection with the
formation of active regions near the surface layers of the Sun. This
instability is related to the negative contribution of turbulence to the mean
magnetic pressure that causes the formation of large-scale magnetic structures.
For an isothermal layer, direct numerical simulations and mean-field
simulations of this phenomenon are shown to agree in many details in that their
onset occurs at the same depth. This depth increases with increasing field
strength, such that the maximum growth rate of this instability is independent
of the field strength, provided the magnetic structures are fully contained
within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity
and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
Targeted delivery of antisense oligonucleotides by molecular conjugates
Antisense oligonucleotides efficiently inhibit gene expression in vitro; however, the successful therapeutic application of this technology in vivo will require the development of improved delivery systems. In this report we describe a technique that efficiently delivers antisense oligonucleotides into cells using molecular conjugates. This technique, which was initially developed for the delivery of eukaryotic genes, is based on the construction of DNA-protein complexes that are recognized by the liver-specific asialoglycoprotein receptor. Binding of poly( l -lysine)-asialoorosomucoid (AsOR) protein conjugates with phosphorothioate antisense oligonucleotides to chloramphenicol acetyltransferase (CAT) led to the formation of 50- to 150-nm toroids. Exposure of the antisense molecular complexes (3 ”M oligonucleotide) to NIH 3T3 cells genetically modified to express both the AsOR receptor and CAT, inhibited CAT expression by 54%, which was completely blocked by excess AsOR. Equivalent inhibition of CAT activity with purified oligonucleotide alone was observed at a 30 ”M concentration. Furthermore, examination of the cells using indirect immunofluorescence for the presence of CAT protein showed 28% of cells exposed to the molecular conjugates lacked any detectable CAT enzyme. Cells exposed to oligonucleotide alone showed a highly variable staining pattern, and only a few of the cells were completely void of CAT protein. Together these data demonstrate that molecular conjugates provide a highly specific and efficient system for the delivery of antisense oligonucleotides.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45543/1/11188_2005_Article_BF01232652.pd
Metastability Driven by Soft Quantum Fluctuation Modes
The semiclassical Euclidean path integral method is applied to compute the
low temperature quantum decay rate for a particle placed in the metastable
minimum of a cubic potential in a {\it finite} time theory. The classical path,
which makes a saddle for the action, is derived in terms of Jacobian elliptic
functions whose periodicity establishes the one-to-one correspondence between
energy of the classical motion and temperature (inverse imaginary time) of the
system. The quantum fluctuation contribution has been computed through the
theory of the functional determinants for periodic boundary conditions. The
decay rate shows a peculiar temperature dependence mainly due to the softening
of the low lying quantum fluctuation eigenvalues. The latter are determined by
solving the Lam\`{e} equation which governs the fluctuation spectrum around the
time dependent classical bounce.Comment: Journal of Low Temperature Physics (2008) Publisher: Springer
Netherland
Spontaneous formation of flux concentrations in a stratified layer
The negative effective magnetic pressure instability discovered recently in
direct numerical simulations (DNS) may play a crucial role in the formation of
sunspots and active regions in the Sun and stars. This instability is caused by
a negative contribution of turbulence to the effective mean Lorentz force (the
sum of turbulent and non-turbulent contributions) and results in formation of
large-scale inhomogeneous magnetic structures from initial uniform magnetic
field. Earlier investigations of this instability in DNS of stably stratified,
externally forced, isothermal hydromagnetic turbulence in the regime of large
plasma beta are now extended into the regime of larger scale separation ratios
where the number of turbulent eddies in the computational domain is about 30.
Strong spontaneous formation of large-scale magnetic structures is seen even
without performing any spatial averaging. These structures encompass many
turbulent eddies. The characteristic time of the instability is comparable to
the turbulent diffusion time, L^2/eta_t, where eta_t is the turbulent
diffusivity and L is the scale of the domain. DNS are used to confirm that the
effective magnetic pressure does indeed become negative for magnetic field
strengths below the equipartition field. The dependence of the effective
magnetic pressure on the field strength is characterized by fit parameters that
seem to show convergence for larger values of the magnetic Reynolds number.Comment: 14 pages, 8 figures, submitted to special issue "Advances of European
Solar Physics" in Solar Physic
Advances in Global and Local Helioseismology: an Introductory Review
Helioseismology studies the structure and dynamics of the Sun's interior by
observing oscillations on the surface. These studies provide information about
the physical processes that control the evolution and magnetic activity of the
Sun. In recent years, helioseismology has made substantial progress towards the
understanding of the physics of solar oscillations and the physical processes
inside the Sun, thanks to observational, theoretical and modeling efforts. In
addition to the global seismology of the Sun based on measurements of global
oscillation modes, a new field of local helioseismology, which studies
oscillation travel times and local frequency shifts, has been developed. It is
capable of providing 3D images of the subsurface structures and flows. The
basic principles, recent advances and perspectives of global and local
helioseismology are reviewed in this article.Comment: 86 pages, 46 figures; "Pulsation of the Sun and Stars", Lecture Notes
in Physics, Vol. 832, Rozelot, Jean-Pierre; Neiner, Coralie (Eds.), 201
Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)
Mechanisms of the formation and stability of sunspots are among the
longest-standing and intriguing puzzles of solar physics and astrophysics.
Sunspots are controlled by subsurface dynamics hidden from direct observations.
Recently, substantial progress in our understanding of the physics of the
turbulent magnetized plasma in strong-field regions has been made by using
numerical simulations and local helioseismology. Both the simulations and
helioseismic measurements are extremely challenging, but it becomes clear that
the key to understanding the enigma of sunspots is a synergy between models and
observations. Recent observations and radiative MHD numerical models have
provided a convincing explanation to the Evershed flows in sunspot penumbrae.
Also, they lead to the understanding of sunspots as self-organized magnetic
structures in the turbulent plasma of the upper convection zone, which are
maintained by a large-scale dynamics. Local helioseismic diagnostics of
sunspots still have many uncertainties, some of which are discussed in this
review. However, there have been significant achievements in resolving these
uncertainties, verifying the basic results by new high-resolution observations,
testing the helioseismic techniques by numerical simulations, and comparing
results obtained by different methods. For instance, a recent analysis of
helioseismology data from the Hinode space mission has successfully resolved
several uncertainties and concerns (such as the inclined-field and phase-speed
filtering effects) that might affect the inferences of the subsurface
wave-speed structure of sunspots and the flow pattern. It becomes clear that
for the understanding of the phenomenon of sunspots it is important to further
improve the helioseismology methods and investigate the whole life cycle of
active regions, from magnetic-flux emergence to dissipation.Comment: 34 pages, 18 figures, submitted to Solar Physic
- âŠ