11 research outputs found

    Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell

    Get PDF
    A sound knowledge of mechanical properties of rocks at high temperatures and pressures is essential for modelling volcanological problems such as fracture of lava flows and dike emplacement. In particular, fracture toughness is a scale-invariant material property of a rock that describes its resistance to tensile failure. A new fracture mechanics apparatus has been constructed enabling fracture toughness measurements on large (60 mm diameter) rock core samples at temperatures up to 750–C and pressures up to 50 MPa. We present a full description of this apparatus and, by plotting fracture resistance as a function of crack length, show that the size of the samples is sufficient for reliable fracture toughness measurements. A series of tests on Icelandic, Vesuvian and Etnean basalts at temperatures from 30 to 600–C and confining pressures up to 30 MPa gave fracture toughness values between 1.4 and 3.8 MPa m1=2. The Icelandic basalt is the strongest material and the Etnean material sampled from the surface crust of a lava flow the weakest. Increasing temperature does not greatly affect the fracture toughness of the Etnean or Vesuvian material but the Icelandic samples showed a marked increase in toughness at around 150–C, followed by a return to ambient toughness levels. This material also became tougher under moderate confining pressure but the other two materials showed little change in toughness. We describe in terms of fracture mechanics probable causes for the changes in fracture toughness and compare our experimental results with values obtained from dike propagation modelling found in the literature

    Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Get PDF
    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models

    Introduction. Progress in Earth science and climate studies

    No full text

    Comparison of earthquake strains over 10(2) and 10(4) year timescales: insights into variability in the seismic cycle in the central Apennines, Italy

    Get PDF
    In order to study the existence of possible deficits or surpluses of geodetic and earthquake strain in the Lazio-Abruzzo region of the central Apennines compared to 15 +/- 3 kyrs multi seismic cycle strain-rates, horizontal strain-rates are calculated in 5 km x 5 km and 20 km x 20 km grid squares using slip-vectors from striated faults and offsets of Late Pleistocene-Holocene landforms and sediments. Strain-rates calculated over 15 +/- 3 kyrs within 5 km x 5 km grid squares vary from zero up to 2.34 +/- 0.54 x 10(-7) yr(-1) and resolve variations in strain orientations and magnitudes along the strike of individual faults. Surface strain-rates over a time period of 15 +/- 3 kyrs from 5 km x 5 km grid squares integrated over an area of 80 km x 160 km shows the horizontal strain-rate of the central Apennines is 1.18(-0.04)(+0.12)x10(-8) yr(-1) and -1.83(-4.43)(+3.80) x 10(-10) yr(-1) parallel and perpendicular to the regional principal strain direction (043 degrees-223 degrees+/-1 degrees), associated with extension rates of <= 3.1(-0.4)(+0.7) mm yr-1 if calculated in 5 km x 80 km boxes crossing the strike of the central Apennines. These strain-rates are similar in direction to strain-rates calculated using geodesy (over 126 yrs, 11 yrs and 5 yrs) and seismic moment summation (over 700 yrs); however, the magnitude is about 2.6 x less over a comparable area. The 10(2) yr strain-rates are higher than 10(4) yr strain-rates in some smaller areas (approximate to 2000 km(2), corresponding to polygons defined by geodesy campaigns and seismic moment summations) with the opposite situation in other areas where seismic moment release rates in large (>Ms 6.0) magnitude historical earthquakes have been reported to be as low as zero. This demonstrates the importance of comparing the exact same areas and that strain-rates vary spatially on the length scale of individual faults and on a timescale between 10(2) yr and 10(4) yr in the central Apennines. We use these results to produce a fault specific earthquake recurrence interval map and discuss the regional deformation related to plate boundary and sub-crustal forces, temporal earthquake clustering and the natural variability of the seismic cycle

    A 667-year record of co-seismic and interseismic Coulomb stress changes in central Italy reveals the role of fault interaction in controlling irregular earthquake recurrence intervals

    Get PDF
    Current studies of fault interaction lack sufficiently long earthquake records and measurements of fault slip rates over multiple seismic cycles to fully investigate the effects of interseismic loading and coseismic stress changes on the surrounding fault network. We model elastic interactions between 97 faults from 30 earthquakes since 1349 A.D. in central Italy to investigate the relative importance of co-seismic stress changes versus interseismic stress accumulation for earthquake occurrence and fault interaction. This region has an exceptionally long, 667 year record of historical earthquakes and detailed constraints on the locations and slip rates of its active normal faults. Of 21 earthquakes since 1654, 20 events occurred on faults where combined coseismic and interseismic loading stresses were positive even though ~20% of all faults are in “stress shadows” at any one time. Furthermore, the Coulomb stress on the faults that experience earthquakes is statistically different from a random sequence of earthquakes in the region. We show how coseismic Coulomb stress changes can alter earthquake interevent times by ~103 years, and fault length controls the intensity of this effect. Static Coulomb stress changes cause greater interevent perturbations on shorter faults in areas characterized by lower strain (or slip) rates. The exceptional duration and number of earthquakes we model enable us to demonstrate the importance of combining long earthquake records with detailed knowledge of fault geometries, slip rates, and kinematics to understand the impact of stress changes in complex networks of active faults

    Horizontal strain-rates and throw-rates across breached relay zones, central Italy: implications for the preservation of throw deficits at points of normal fault linkage

    No full text
    In order to investigate the relationship between the throws and 3D orientation of breaching faults crossing relay zones, kinematic data, throw-rates and total throws have been measured for an active normal fault in the Italian Apennines that displays a relay zone at its centre. The c. 0.8 km long breaching fault dips at 67 ± 5° and strikes obliquely to c. 2–3 km long faults outside the relay zone which dip at 61 ± 5°. Total throws of pre-rift limestone define a throw profile with a double maximum (370 ± 50 m; 360 ± 50 m) separated by an area of lower throw (100 ± 50 m) where the breaching fault is growing. Throw-rates implied by offsets across bedrock scarps of Late Pleistocene–Holocene landforms (15 ± 3 ka) are higher across the breaching fault (0.67 ± 0.13 mm/yr) than for locations of throw maxima on the neighbouring faults (0.38 ± 0.07 mm/yr; 0.55 ± 0.11 mm/yr). The deficit in total throw will be removed in 0.68–1.0 Myr if these deformation rates continue. To investigate why the highest throw-rates occur in the location with lowest total throw, Kostrov horizontal strain-rate tensors were calculated in 1 × 2 km boxes. We show that the oblique strike and relatively high dip of the breaching fault mean that it must have a relatively high throw-rate in order for it to have a horizontal strain-rate concomitant with its position at the centre of the overall fault. We show that whether throw minima at locations of fault linkage are preserved during progressive fault slip depends on the 3D orientation of the breaching fault. We use the above to discuss the longevity of throw deficits and multiple throw maxima along faults in relation to seismic hazard and landscape evolution
    corecore