66 research outputs found
Electronic Structure of Disclinated Graphene in an Uniform Magnetic Field
The electronic structure in the vicinity of the 1-heptagonal and 1-pentagonal
defects in the carbon graphene plane is investigated. Using a continuum gauge
field-theory model the local density of states around the Fermi energy is
calculated for both cases. In this model, the disclination is represented by an
SO(2) gauge vortex and corresponding metric follows from the elasticity
properties of the graphene membrane. To enhance the interval of energies, a
self-consistent perturbation scheme is used. The Landau states are investigated
and compared with the predicted values.Comment: keywords: graphene, heptagonal defect, elasticity, carbon nanohorns,
13 page
A universal Hamiltonian for the motion and the merging of Dirac cones in a two-dimensional crystal
We propose a simple Hamiltonian to describe the motion and the merging of
Dirac points in the electronic spectrum of two-dimensional electrons. This
merging is a topological transition which separates a semi-metallic phase with
two Dirac cones from an insulating phase with a gap. We calculate the density
of states and the specific heat. The spectrum in a magnetic field B is related
to the resolution of a Schrodinger equation in a double well potential. They
obey the general scaling law e_n \propto B^{2/3} f_n(Delta /B^{2/3}. They
evolve continuously from a sqrt{n B} to a linear (n+1/2)B dependence, with a
[(n+1/2)B]^{2/3} dependence at the transition. The spectrum in the vicinity of
the topological transition is very well described by a semiclassical
quantization rule. This model describes continuously the coupling between
valleys associated with the two Dirac points, when approaching the transition.
It is applied to the tight-binding model of graphene and its generalization
when one hopping parameter is varied. It remarkably reproduces the low field
part of the Rammal-Hofstadter spectrum for the honeycomb lattice.Comment: 18 pages, 15 figure
Unveiling Soft Gamma-Ray Repeaters with INTEGRAL
Thanks to INTEGRAL's long exposures of the Galactic Plane, the two brightest
Soft Gamma-Ray Repeaters, SGR 1806-20 and SGR 1900+14, have been monitored and
studied in detail for the first time at hard-X/soft gamma rays.
This has produced a wealth of new scientific results, which we will review
here. Since SGR 1806-20 was particularly active during the last two years, more
than 300 short bursts have been observed with INTEGRAL. and their
characteristics have been studied with unprecedented sensitivity in the 15-200
keV range. A hardness-intensity anticorrelation within the bursts has been
discovered and the overall Number-Intensity distribution of the bursts has been
determined. In addition, a particularly active state, during which ~100 bursts
were emitted in ~10 minutes, has been observed on October 5 2004, indicating
that the source activity was rapidly increasing. This eventually led to the
Giant Flare of December 27th 2004, for which a possible soft gamma-ray (>80
keV) early afterglow has been detected.
The deep observations allowed us to discover the persistent emission in hard
X-rays (20-150 keV) from 1806-20 and 1900+14, the latter being in a quiescent
state, and to directly compare the spectral characteristics of all Magnetars
(two SGRs and three Anomalous X-ray Pulsars) detected with INTEGRAL.Comment: 8 pages, 7 figures, Presented at the conference "Isolated Neutron
Stars: from the Surface to the Interior", London, UK, 24-28 April 200
Interplay between edge states and simple bulk defects in graphene nanoribbons
We study the interplay between the edge states and a single impurity in a
zigzag graphene nanoribbon. We use tight-binding exact diagonalization
techniques, as well as density functional theory calculations to obtain the
eigenvalue spectrum, the eigenfunctions, as well the dependence of the local
density of states (LDOS) on energy and position. We note that roughly half of
the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize
with the impurity state, and the corresponding eigenvalues are shifted with
respect to their unperturbed values. The maximum shift and hybridization occur
for a state whose energy is inverse proportional to the impurity potential;
this energy is that of the impurity peak in the DOS spectrum. We find that the
interference between the impurity and the edge gives rise to peculiar
modifications of the LDOS of the nanoribbon, in particular to oscillations of
the edge LDOS. These effects depend on the size of the system, and decay with
the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex
The Dark Matter halo of the Milky Way, AD 2013
We derive the mass model of the Milky Way (MW) using a cored dark matter (DM) halo profile and recent data. The method used consists in fitting a spherically symmetric model of the Galaxy with a Burkert DM halo profile to available data: MW terminal velocities in the region inside the solar circle, circular velocity as recently estimated from maser star forming regions at intermediate radii, and velocity dispersions of stellar halo tracers for the outermost Galactic region. The latter are reproduced by integrating the Jeans equation for every modeled mass distribution, and by allowing for different velocity anisotropies for different tracer populations. For comparison we also consider a Navarro-Frenk-White profile. We find that the cored profile is the preferred one, with a shallow central density of rho_H~4x10^7M_s/kpc^3 and a large core radius R_H~10 kpc, as observed in external spirals and in agreement with the mass model underlying the Universal Rotation Curve of spirals. We describe also the derived model uncertainties, which are crucially driven by the poorly constrained velocity dispersion anisotropies of halo tracers. The emerging cored DM distribution has implications for the DM annihilation angular profile, which is much less boosted in the Galactic center direction with respect to the case of the standard \Lambda CDM, NFW profile. Using the derived uncertainties we discuss finally the limitations and prospects to discriminate between cored and cusped DM profile with a possible observed diffuse DM annihilation signal. The present mass model aims to characterize the present-day description of the distribution of matter in our Galaxy, which is needed to frame current crucial issues of Cosmology, Astrophysics and Elementary Particles
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited
- …