2,065 research outputs found
Analytic approximation and an improved method for computing the stress-energy of quantized scalar fields in Robertson-Walker spacetimes
An improved method is given for the computation of the stress-energy tensor
of a quantized scalar field using adiabatic regularization. The method works
for fields with arbitrary mass and curvature coupling in Robertson-Walker
spacetimes and is particularly useful for spacetimes with compact spatial
sections. For massless fields it yields an analytic approximation for the
stress-energy tensor that is similar in nature to those obtained previously for
massless fields in static spacetimes.Comment: RevTeX, 8 pages, no figure
Conformal Scalar Propagation on the Schwarzschild Black-Hole Geometry
The vacuum activity generated by the curvature of the Schwarzschild
black-hole geometry close to the event horizon is studied for the case of a
massless, conformal scalar field. The associated approximation to the unknown,
exact propagator in the Hartle-Hawking vacuum state for small values of the
radial coordinate above results in an analytic expression which
manifestly features its dependence on the background space-time geometry. This
approximation to the Hartle-Hawking scalar propagator on the Schwarzschild
black-hole geometry is, for that matter, distinct from all other. It is shown
that the stated approximation is valid for physical distances which range from
the event horizon to values which are orders of magnitude above the scale
within which quantum and backreaction effects are comparatively pronounced. An
expression is obtained for the renormalised in the
Hartle-Hawking vacuum state which reproduces the established results on the
event horizon and in that segment of the exterior geometry within which the
approximation is valid. In contrast to previous results the stated expression
has the superior feature of being entirely analytic. The effect of the
manifold's causal structure to scalar propagation is also studied.Comment: 34 pages, 2 figures. Published on line on October 16, 2009 and due to
appear in print in Gen.Rel.Gra
Energy-Momentum Tensor of Particles Created in an Expanding Universe
We present a general formulation of the time-dependent initial value problem
for a quantum scalar field of arbitrary mass and curvature coupling in a FRW
cosmological model. We introduce an adiabatic number basis which has the virtue
that the divergent parts of the quantum expectation value of the
energy-momentum tensor are isolated in the vacuum piece of , and
may be removed using adiabatic subtraction. The resulting renormalized
is conserved, independent of the cutoff, and has a physically transparent,
quasiclassical form in terms of the average number of created adiabatic
`particles'. By analyzing the evolution of the adiabatic particle number in de
Sitter spacetime we exhibit the time structure of the particle creation
process, which can be understood in terms of the time at which different
momentum scales enter the horizon. A numerical scheme to compute as a
function of time with arbitrary adiabatic initial states (not necessarily de
Sitter invariant) is described. For minimally coupled, massless fields, at late
times the renormalized goes asymptotically to the de Sitter invariant
state previously found by Allen and Folacci, and not to the zero mass limit of
the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ
from zero, but satisfy m^2+xi R=0, the energy density and pressure of the
scalar field grow linearly in cosmic time demonstrating that, at least in this
case, backreaction effects become significant and cannot be neglected in de
Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure
Boulware state and semiclassical thermodynamics of black holes in a cavity
A black hole, surrounded by a reflecting shell, acts as an effective
star-like object with respect to the outer region that leads to vacuum
polarization outside, where the quantum fields are in the Boulware state. We
find the quantum correction to the Hawking temperature, taking into account
this circumstance. It is proportional to the integral of the trace of the total
quantum stress-energy tensor over the whole space from the horizon to infinity.
For the shell, sufficiently close to the horizon, the leading term comes from
the boundary contribution of the Boulware state.Comment: 7 pages. To appear in Phys. Rev.
Exploring potential germline associated roles of the TRIM-NHL protein NHL-2 through RNAi screening
TRIM-NHL proteins are highly conserved regulators of developmental pathways in vertebrates and invertebrates. The TRIM-NHL family member NHL-2 in Caenorhabditis elegans functions as a miRNA cofactor to regulate developmental timing. Similar regulatory roles have been reported in other model systems, with the mammalian ortholog in mice, TRIM32, contributing to muscle and neuronal cell proliferation via miRNA activity. Given the interest associated with TRIM-NHL family proteins, we aimed to further investigate the role of NHL-2 in C. elegans development by using a synthetic RNAi screening approach. Using the ORFeome library, we knocked down 11,942 genes in wild-type animals and nhl-2 null mutants. In total, we identified 42 genes that produced strong reproductive synthetic phenotypes when knocked down in nhl-2 null mutants, with little or no change when knocked down in wild-type animals. These included genes associated with transcriptional processes, chromosomal integrity, and key cofactors of the germline small 22G RNA pathway.Gregory M. Davis, Wai Y. Low, Joshua W.T. Anderson and Peter R. Boa
The rhodanese RhdA helps Azotobacter vinelandii in maintaining cellular redox balance
The tandem domain rhodanese-homology protein RhdA of Azotobacter vinelandii shows an active-site loop structure that confers structural peculiarity in the environment of its catalytic cysteine residue. The in vivo effects of the lack of RhdA were investigated using an A. vinelandii mutant strain (MV474) in which the rhdA gene was disrupted by deletion. Here, by combining analytical measurements and transcript profiles, we show that deletion of the rhdA gene generates an oxidative stress condition to which A. vinelandii responds by activating defensive mechanisms. In conditions of growth in the presence of the superoxide generator phenazine methosulfate, a stressor-dependent induction of rhdA gene expression was observed, thus highlighting that RhdA is important for A. vinelandii to sustain oxidative stress. The potential of RhdA to buffer general levels of oxidants in A. vinelandii cells via redox reactions involving its cysteine thiol is discussed.Vigoni project/081517
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
Vacuum polarization in two-dimensional static spacetimes and dimensional reduction
We obtain an analytic approximation for the effective action of a quantum
scalar field in a general static two-dimensional spacetime. We apply this to
the dilaton gravity model resulting from the spherical reduction of a massive,
non-minimally coupled scalar field in the four-dimensional Schwarzschild
geometry. Careful analysis near the event horizon shows the resulting
two-dimensional system to be regular in the Hartle-Hawking state for general
values of the field mass, coupling, and angular momentum, while at spatial
infinity it reduces to a thermal gas at the black-hole temperature.Comment: REVTeX 4, 23 pages. Accepted by PRD. Minor modifications from
original versio
Vacuum polarization in the spacetime of charged nonlinear black hole
Building on general formulas obtained from the approximate renormalized
effective action, the approximate stress-energy tensor of the quantized massive
scalar field with arbitrary curvature coupling in the spacetime of charged
black hole being a solution of coupled equations of nonlinear electrodynamics
and general relativity is constructed and analysed. It is shown that in a few
limiting cases, the analytical expressions relating obtained tensor to the
general renormalized stress-energy tensor evaluated in the geometry of the
Reissner-Nordstr\"{o}m black hole could be derived. A detailed numerical
analysis with special emphasis put on the minimal coupling is presented and the
results are compared with those obtained earlier for the conformally coupled
field. Some novel features of the renormalized stress-energy tensor are
discussed
Analytical approximation of the stress-energy tensor of a quantized scalar field in static spherically symmetric spacetimes
Analytical approximations for and of a
quantized scalar field in static spherically symmetric spacetimes are obtained.
The field is assumed to be both massive and massless, with an arbitrary
coupling to the scalar curvature, and in a zero temperature vacuum state.
The expressions for and are divided into
low- and high-frequency parts. The contributions of the high-frequency modes to
these quantities are calculated for an arbitrary quantum state. As an example,
the low-frequency contributions to and are
calculated in asymptotically flat spacetimes in a quantum state corresponding
to the Minkowski vacuum (Boulware quantum state). The limits of the
applicability of these approximations are discussed.Comment: revtex4, 17 pages; v2: three references adde
- …
