944 research outputs found
Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP
Inelastic neutron scattering on deuterated single-crystal samples is used to
study Haldane-gap excitations in the new S=1 one-dimensional quantum
antiferromagnet NDMAP, that was recently recognized as an ideal model system
for high-field studies. The Haldane gap energies meV,
meV and meV, for excitations polarized along
the a, b, and c crystallographic axes, respectively, are directly measured. The
dispersion perpendicular to the chain axis c is studied, and extremely weak
inter-chain coupling constants meV and meV, along the a and b axes, respectively, are determined. The results
are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Same-sign dileptons as a signature for heavy Majorana neutrinos in hadron-hadron collisions
We discuss the possibility of same-sign dileptons as a signature for Majorana
neutrinos. The production mechanism is given by a single heavy neutrino
production and decay proton-proton -> l^{\pm} N X -> l^{\pm} l^{\pm} X'. Cross
section and distributions are presented for the LHC energies.Comment: 07 pages, LaTeX; to be published in Physics Letters
Critical Dynamics of Magnets
We review our current understanding of the critical dynamics of magnets above
and below the transition temperature with focus on the effects due to the
dipole--dipole interaction present in all real magnets. Significant progress in
our understanding of real ferromagnets in the vicinity of the critical point
has been made in the last decade through improved experimental techniques and
theoretical advances in taking into account realistic spin-spin interactions.
We start our review with a discussion of the theoretical results for the
critical dynamics based on recent renormalization group, mode coupling and spin
wave theories. A detailed comparison is made of the theory with experimental
results obtained by different measuring techniques, such as neutron scattering,
hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and
magnetic relaxation, in various materials. Furthermore we discuss the effects
of dipolar interaction on the critical dynamics of three--dimensional isotropic
antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a
discussion of the consequences of dipolar anisotropies on the existence of
magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and
antiferromagnets. We close our review with a formulation of critical dynamics
in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included
Distribution of exchange energy in a bond-alternating S=1 quantum spin chain
The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP
is studied by single crystal inelastic neutron scattering. Parameters of the
measured dispersion relation for magnetic excitations are compared to existing
numerical results and used to determine the magnitude of bond-strength
alternation. The measured neutron scattering intensities are also analyzed
using the 1st-moment sum rules for the magnetic dynamic structure factor, to
directly determine the modulation of ground state exchange energies. These
independently determined modulation parameters characterize the level of spin
dimerization in NTENP. First-principle DMRG calculations are used to study the
relation between these two quantities.Comment: 10 pages, 10 figure
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model
In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified
dark matter and dark energy model. The energy density of GCG model is given as
,
where and are two model parameters which will be constrained by
type Ia supernova as standard candles, baryon acoustic oscillation as standard
rulers and the seventh year full WMAP data points. In this paper, we will not
separate GCG into dark matter and dark energy parts any more as adopted in the
literatures. By using Markov Chain Monte Carlo method, we find the result:
and .Comment: 6 pages, 4 figure
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
- …