1,985 research outputs found
Production of Neutral Fermion in Linear Magnetic Field through Pauli Interaction
We calculate the production rate of neutral fermions in linear magnetic
fields through the Pauli interaction. It is found that the production rate is
exponentially decreasing function with respect to the inverse of the magnetic
field gradient, which shows the non-perturbative characteristics analogous to
the Schwinger process. It turns out that the production rate density depends on
both the gradient and the strength of magnetic fields in 3+1 dimension. It is
quite different from the result in 2+1 dimension, where the production rate
depends only on the gradient of the magnetic fields, not on the strength of the
magnetic fields. It is also found that the production of neutral fermions
through the Pauli interaction is a magnetic effect whereas the production of
charged particles through minimal coupling is an electric effect.Comment: 11 pages, 2 figure
Effective Potential for Uniform Magnetic Fields through Pauli Interaction
We have calculated the explicit form of the real and imaginary parts of the
effective potential for uniform magnetic fields which interact with spin-1/2
fermions through the Pauli interaction. It is found that the non-vanishing
imaginary part develops for a magnetic field stronger than a critical field,
whose strength is the ratio of the fermion mass to its magnetic moment. This
implies the instability of the uniform magnetic field beyond the critical field
strength to produce fermion pairs with the production rate density
in the
presence of Pauli interaction.Comment: 9 pages with 1 figur
Effect of microstructures on the electron-phonon interaction in the disordered metals PdAg
Using the weak-localization method, we have measured the electron-phonon
scattering times in PdAg thick films prepared by DC-
and RF-sputtering deposition techniques. In both series of samples, we find an
anomalous temperature and disorder dependence,
where is the electron elastic mean free path. This anomalous behavior
cannot be explained in terms of the current concepts for the electron-phonon
interaction in impure conductors. Our result also reveals that the strength of
the electron-phonon coupling is much stronger in the DC than RF sputtered
films, suggesting that the electron-phonon interaction not only is sensitive to
the total level of disorder but also is sensitive to the microscopic quality of
the disorder.Comment: accepted for publication in Phys. Rev.
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Searching a bitstream in linear time for the longest substring of any given density
Given an arbitrary bitstream, we consider the problem of finding the longest
substring whose ratio of ones to zeroes equals a given value. The central
result of this paper is an algorithm that solves this problem in linear time.
The method involves (i) reformulating the problem as a constrained walk through
a sparse matrix, and then (ii) developing a data structure for this sparse
matrix that allows us to perform each step of the walk in amortised constant
time. We also give a linear time algorithm to find the longest substring whose
ratio of ones to zeroes is bounded below by a given value. Both problems have
practical relevance to cryptography and bioinformatics.Comment: 22 pages, 19 figures; v2: minor edits and enhancement
Termination of the Phase of Quintessence by Gravitational Back-Reaction
We study the effects of gravitational back-reaction in models of
Quintessence. The effective energy-momentum tensor with which cosmological
fluctuations back-react on the background metric will in some cases lead to a
termination of the phase of acceleration. The fluctuations we make use of are
the perturbations in our present Universe. Their amplitude is normalized by
recent measurements of anisotropies in the cosmic microwave background, their
slope is taken to be either scale-invariant, or characterized by a slightly
blue tilt. In the latter case, we find that the back-reaction effect of
fluctuations whose present wavelength is smaller than the Hubble radius but
which are stretched beyond the Hubble radius by the accelerated expansion
during the era of Quintessence domination can become large. Since the
back-reaction effects of these modes oppose the acceleration, back-reaction
will lead to a truncation of the period of Quintessence domination. This result
impacts on the recent discussions of the potential incompatibility between
string theory and Quintessence.Comment: 7 pages a few clarifying comments adde
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
- …