4 research outputs found

    Population genetic approaches to neurological disease: Parkinson's disease as an example

    No full text
    Parkinson's disease (PD) is a common, progressive, incurable disabling condition. The cause is unknown but over the past few years tremendous progress in our understanding of the genetic bases of this condition has been made. To date, this has almost exclusively come from the study of relatively rare Mendelian forms of the disease and there are no currently, widely accepted common variants known to increase susceptibility. The role that the ‘Mendelian’ genes play in common sporadic forms of PD is unknown. Moreover, most studies in PD can really be described as candidate polymorphism studies rather than true and complete assessments of the genes themselves. We provide a model of how one might tackle some of these issues using Parkinson's disease as an illustration. One of the emerging hypotheses of gene environment interaction in Parkinson's disease is based on drug metabolizing (or xenobiotic) enzymes and their interaction with putative environmental toxins. This motivated us to describe a tagging approach for an extensive but not exhaustive list of 55 drug metabolizing enzyme genes. We use these data to illustrate the power, and some of the limitations of a haplotype tagging approach. We show that haplotype tagging is extremely efficient and works well with only a modest increase in effort through different populations. The tagging approach works much less well if the minor allele frequency is below 5%. However, it will now be possible using these tags to evaluate these genes comprehensively in PD and other neurodegenerative conditions

    Hereditary motor and autonomic neuronopathy 1 maps to chromosome 20q13.2-13.3

    No full text
    The spinal muscular atrophies (SMA) or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1) to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons

    Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study

    Get PDF
    Background: Mutations in LRRK2, the gene that encodes leucine-rich repeat kinase 2, are a cause of Parkinson's disease (PD). The International LRRK2 Consortium was established to answer three key clinical questions: can LRRK2-associated PD be distinguished from idiopathic PD; which mutations in LRRK2 are pathogenic; and what is the age-specific cumulative risk of PD for individuals who inherit or are at risk of inheriting a deleterious mutation in LRRK2? Methods: Researchers from 21 centres across the world collaborated on this study. The frequency of the common LRRK2 Gly2019Ser mutation was estimated on the basis of data from 24 populations worldwide, and the penetrance of the mutation was defined in 1045 people with mutations in LRRK2 from 133 families. The LRRK2 phenotype was defined on the basis of 59 motor and non-motor symptoms in 356 patients with LRRK2-associated PD and compared with the symptoms of 543 patients with pathologically proven idiopathic PD. Findings: Six mutations met the consortium's criteria for being proven pathogenic. The frequency of the common LRRK2 Gly2019Ser mutation was 1% of patients with sporadic PD and 4% of patients with hereditary PD; the frequency was highest in the middle east and higher in southern Europe than in northern Europe. The risk of PD for a person who inherits the LRRK2 Gly2019Ser mutation was 28% at age 59 years, 51% at 69 years, and 74% at 79 years. The motor symptoms (eg, disease severity, rate of progression, occurrence of falls, and dyskinesia) and non-motor symptoms (eg, cognition and olfaction) of LRRK2-associated PD were more benign than those of idiopathic PD. Interpretation: Mutations in LRRK2 are a clinically relevant cause of PD that merit testing in patients with hereditary PD and in subgroups of patients with PD. However, this knowledge should be applied with caution in the diagnosis and counselling of patients. Funding: UK Medical Research Council; UK Parkinson's Disease Society; UK Brain Research Trust; Internationaal Parkinson Fonds; Volkswagen Foundation; National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of Aging; Udall Parkinson's Disease Centre of Excellence; Pacific Alzheimer Research Foundation Centre; Italian Telethon Foundation; Fondazione Grigioni per il Morbo di Parkinson; Michael J Fox Foundation for Parkinson's Research; Safra Global Genetics Consortium; US Department of Veterans Affairs; French Agence Nationale de la Recherche
    corecore