4 research outputs found

    New laser techniques for cooling of an ion beam in a storage ring

    No full text
    We have developed broad-band laser sources that show a sharp edge in their spectra and are particularly suitable for “white-light” laser cooling of ions in storage rings. They allow for a very large velocity capture range by maintaining the same cooling rate of single mode lasers

    White-light laser cooling of ions in a storage ring

    No full text
    We propose the use of a "white laser" for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams

    A storage ring for crystalline beam studies

    No full text
    The possibility of generating crystallized ion beams, i.e. beams whose particles are located at fixed positions, has always excited the interest of most people working on particle accelerators. The reason of this interest has many aspects: knowledge either of a completely new research field or of some of the applicative potentialities, connected with crystalline beams, would justify a careful investigation of this subject. After the successful exploitation of electron cooling in several heavy ion storage rings the possibility of generating crystalline ion beams became more realistic. New cooling methods, like laser cooling, give a further opportunity to reach an ultracold system of particles necessary for the state transition to the crystalline configuration. The conceptual design of a low-energy heavy-ion storage ring, called CRYSTAL, proposed for the experimental demonstration of crystalline beams at Legnaro Laboratories is presented. The physics of crystalline beams as well as the main criteria to design a storage ring suitable to crystallize ion beams are discussed. The effects of instabilities for space charge dominated beams, shear forces in dipole magnets and lattice periodicity breaking are also discussed in detail
    corecore