88 research outputs found
Status of the connection between unidentified EGRET sources and supernova remnants: The case of CTA 1
In this paper we briefly comment on the observational status of the possible
physical association between unidentified EGRET sources and supernova remnants
(SNRs) in our Galaxy. We draw upon recent results presented in the review by
Torres et al. (Physics Reports, 2003), concerning molecular gas in the vicinity
of all 19 SNRs found to be positionally coincident with EGRET sources at low
Galactic latitudes. In addition, we present new results regarding the supernova
remnant CTA~1. Our findings disfavor the possibility of a physical connection
with the nearby (in projection) EGRET source. There remains possible, however,
that the compact object produced in the supernova explosion be related with the
observed -ray flux.Comment: Presented for the proceedings of the II Workshop on Unidentified
Gamma-Ray Sources, Hong Kong, June 1-4, 2004. To appear in Astrophysics and
Space Science. Some changes to address referee's and readers' remarks.
References added. Results unchange
GALPROP WebRun: an internet-based service for calculating galactic cosmic ray propagation and associated photon emissions
GALPROP is a numerical code for calculating the galactic propagation of
relativistic charged particles and the diffuse emissions produced during their
propagation. The code incorporates as much realistic astrophysical input as
possible together with latest theoretical developments and has become a de
facto standard in astrophysics of cosmic rays. We present GALPROP WebRun, a
service to the scientific community enabling easy use of the freely available
GALPROP code via web browsers. In addition, we introduce the latest GALPROP
version 54, available through this service.Comment: Accepted for publication in Computer Physics Communications. Version
2 includes improvements suggested by the referee. Metadata completed in
version 3 (no changes to the manuscript
Do the Unidentified EGRET Sources Trace Annihilating Dark Matter in the Local Group?
In a cold dark matter (CDM) framework of structure formation, the dark matter
haloes around galaxies assemble through successive mergers with smaller haloes.
This merging process is not completely efficient, and hundreds of surviving
halo cores, or {\it subhaloes}, are expected to remain in orbit within the halo
of a galaxy like the Milky Way. While the dozen visible satellites of the Milky
Way may trace some of these subhaloes, the majority are currently undetected. A
large number of high-velocity clouds (HVCs) of neutral hydrogen {\it are}
observed around the Milky Way, and it is plausible that some of the HVCs may
trace subhaloes undetected in the optical. Confirming the existence of
concentrations of dark matter associated with even a few of the HVCs would
represent a dramatic step forward in our attempts to understand the nature of
dark matter. Supersymmetric (SUSY) extensions of the Standard Model of particle
physics currently suggest neutralinos as a natural well-motivated candidate for
the non-baryonic dark matter of the universe. If this is indeed the case, then
it may be possible to detect dark matter indirectly as it annihilates into
neutrinos, photons or positrons. In particular, the centres of subhaloes might
show up as point sources in gamma-ray observations. In this work we consider
the possibility that some of the unidentified EGRET -ray sources trace
annihilating neutralino dark matter in the dark substructure of the Local
Group. We compare the observed positions and fluxes of both the unidentified
EGRET sources and the HVCs with the positions and fluxes predicted by a model
of halo substructure, to determine to what extent any of these three
populations could be associated.Comment: 12 Pages, 4 figures, to appear in a special issue of ApSS. Presented
at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong
Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero
Cosmological model with interactions in the dark sector
A cosmological model is proposed for the current Universe consisted of
non-interacting baryonic matter and interacting dark components. The dark
energy and dark matter are coupled through their effective barotropic indexes,
which are considered as functions of the ratio between their energy densities.
It is investigated two cases where the ratio is asymptotically stable and their
parameters are adjusted by considering best fits to Hubble function data. It is
shown that the deceleration parameter, the densities parameters, and the
luminosity distance have the correct behavior which is expected for a viable
present scenario of the Universe.Comment: 6 pages, 8 figure
Gamma-Ray Emission From Be/X-Ray Binaries
Be/X-ray binaries are systems formed by a massive Be star and a magnetized
neutron star, usually in an eccentric orbit. The Be star has strong equatorial
winds occasionally forming a circumstellar disk. When the neutron star
intersects the disk the accretion rate dramatically increases and a transient
accretion disk can be formed around the compact object. This disk can last
longer than a single orbit in the case of major outbursts. If the disk rotates
faster than the neutron star, the Cheng-Ruderman mechanism can produce a
current of relativistic protons that would impact onto the disk surface,
producing gamma-rays from neutral pion decays and initiating electromagnetic
cascades inside the disk. In this paper we present calculations of the
evolution of the disk parameters during both major and minor X-ray events, and
we discuss the generation of gamma-ray emission at different energies within a
variety of models that include both screened and unscreened disks.Comment: 14 pages, to appear in: "The multiwavelength approach to unidentified
gamma-ray sources", Eds. K. S. Cheng & G.E. Romero, Kluwer Academic Publisher
(Astrophysics and Space Sciences Journal). The present version has two
additional figures respect to the version to be published in the journa
Diffuse inverse Compton and synchrotron emission from dark matter annihilations in galactic satellites
Annihilating dark matter particles produce roughly as much power in electrons
and positrons as in gamma ray photons. The charged particles lose essentially
all of their energy to inverse Compton and synchrotron processes in the
galactic environment. We discuss the diffuse signature of dark matter
annihilations in satellites of the Milky Way (which may be optically dark with
few or no stars), providing a tail of emission trailing the satellite in its
orbit. Inverse Compton processes provide X-rays and gamma rays, and synchrotron
emission at radio wavelengths might be seen. We discuss the possibility of
detecting these signals with current and future observations, in particular
EGRET and GLAST for the gamma rays.Comment: 13 pages, 5 figure
Demystifying an unidentified EGRET source by VHE gamma-ray observations
In a novel approach in observational high-energy gamma-ray astronomy,
observations carried out by imaging atmospheric Cherenkov telescopes provide
necessary templates to pinpoint the nature of intriguing, yet unidentified
EGRET gamma-ray sources. Using GeV-photons detected by CGRO EGRET and taking
advantage of high spatial resolution images from H.E.S.S. observations, we were
able to shed new light on the EGRET observed gamma-ray emission in the
Kookaburra complex, whose previous coverage in the literature is somewhat
contradictory. 3EGJ1420-6038 very likely accounts for two GeV gamma-ray sources
(E>1 GeV), both in positional coincidence with the recently reported pulsar
wind nebulae (PWN) by HESS in the Kookaburra/Rabbit complex. PWN associations
at VHE energies, supported by accumulating evidence from observations in the
radio and X-ray band, are indicative for the PSR/plerionic origin of spatially
coincident, but still unidentified Galactic gamma-ray sources from EGRET. This
not only supports the already suggested connection between variable, but
unidentified low-latitude gamma-ray sources with pulsar wind nebulae
(3EGJ1420-6038 has been suggested as PWN candidate previoulsy), it also
documents the ability of resolving apparently confused EGRET sources by
connecting the GeV emission as measured from a large-aperture space-based
gamma-ray instrument with narrow field-of-view but superior spatial resolution
observations by ground-based atmospheric Cherenkov telescopes, a very promising
identification technique for achieving convincing individual source
identifications in the era of GLAST-LAT.Comment: 4 pages, 5 figures, Accepted for publication in Astrophysics and
Space Science, Proc. of "The Multi-Messenger Approach to High-Energy
Gamma-ray Sources (Third Workshop on the Nature of Unidentified High-Energy
Sources)", Barcelona, July 4-7, 2006, one typo correcte
Fast variability from black-hole binaries
Currently available information on fast variability of the X-ray emission
from accreting collapsed objects constitutes a complex phenomenology which is
difficult to interpret. We review the current observational standpoint for
black-hole binaries and survey models that have been proposed to interpret it.
Despite the complex structure of the accretion flow, key observational
diagnostics have been identified which can provide direct access to the
dynamics of matter motions in the close vicinity of black holes and thus to the
some of fundamental properties of curved spacetimes, where strong-field general
relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science
Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI
"The Physics of Accretion onto Black Holes" (Springer Publisher
Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics
Very-high energy (VHE) gamma quanta contribute only a minuscule fraction -
below one per million - to the flux of cosmic rays. Nevertheless, being neutral
particles they are currently the best "messengers" of processes from the
relativistic/ultra-relativistic Universe because they can be extrapolated back
to their origin. The window of VHE gamma rays was opened only in 1989 by the
Whipple collaboration, reporting the observation of TeV gamma rays from the
Crab nebula. After a slow start, this new field of research is now rapidly
expanding with the discovery of more than 150 VHE gamma-ray emitting sources.
Progress is intimately related with the steady improvement of detectors and
rapidly increasing computing power. We give an overview of the early attempts
before and around 1989 and the progress after the pioneering work of the
Whipple collaboration. The main focus of this article is on the development of
experimental techniques for Earth-bound gamma-ray detectors; consequently, more
emphasis is given to those experiments that made an initial breakthrough rather
than to the successors which often had and have a similar (sometimes even
higher) scientific output as the pioneering experiments. The considered energy
threshold is about 30 GeV. At lower energies, observations can presently only
be performed with balloon or satellite-borne detectors. Irrespective of the
stormy experimental progress, the success story could not have been called a
success story without a broad scientific output. Therefore we conclude this
article with a summary of the scientific rationales and main results achieved
over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic
rays, gamma rays and neutrinos: A survey of 100 years of research
States and transitions in black-hole binaries
With the availability of the large database of black-hole transients from the
Rossi X-Ray Timing Explorer, the observed phenomenology has become very
complex. The original classification of the properties of these systems in a
series of static states sorted by mass accretion rate proved not to be able to
encompass the new picture. I outline here a summary of the current situation
and show that a coherent picture emerges when simple properties such as X-ray
spectral hardness and fractional variability are considered. In particular,
fast transition in the properties of the fast time variability appear to be
crucial to describe the evolution of black-hole transients. Based on this
picture, I present a state-classification which takes into account the observed
transitions. I show that, in addition to transients systems, other black-hole
binaries and Active Galactic Nuclei can be interpreted within this framework.
The association between these states and the physics of the accretion flow
around black holes will be possible only through modeling of the full time
evolution of galactic transient systems.Comment: 30 pages, 11 figures, To appear in Belloni, T. (ed.): The Jet
Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009
- …