11 research outputs found

    Pseudofractal Scale-free Web

    Full text link
    We find that scale-free random networks are excellently modeled by a deterministic graph. This graph has a discrete degree distribution (degree is the number of connections of a vertex) which is characterized by a power-law with exponent γ=1+ln3/ln2\gamma=1+\ln3/\ln2. Properties of this simple structure are surprisingly close to those of growing random scale-free networks with γ\gamma in the most interesting region, between 2 and 3. We succeed to find exactly and numerically with high precision all main characteristics of the graph. In particular, we obtain the exact shortest-path-length distribution. For the large network (lnN1\ln N \gg 1) the distribution tends to a Gaussian of width lnN\sim \sqrt{\ln N} centered at ˉlnN\bar{\ell} \sim \ln N. We show that the eigenvalue spectrum of the adjacency matrix of the graph has a power-law tail with exponent 2+γ2+\gamma.Comment: 5 pages, 3 figure

    Conformal mapping methods for interfacial dynamics

    Full text link
    The article provides a pedagogical review aimed at graduate students in materials science, physics, and applied mathematics, focusing on recent developments in the subject. Following a brief summary of concepts from complex analysis, the article begins with an overview of continuous conformal-map dynamics. This includes problems of interfacial motion driven by harmonic fields (such as viscous fingering and void electromigration), bi-harmonic fields (such as viscous sintering and elastic pore evolution), and non-harmonic, conformally invariant fields (such as growth by advection-diffusion and electro-deposition). The second part of the article is devoted to iterated conformal maps for analogous problems in stochastic interfacial dynamics (such as diffusion-limited aggregation, dielectric breakdown, brittle fracture, and advection-diffusion-limited aggregation). The third part notes that all of these models can be extended to curved surfaces by an auxilliary conformal mapping from the complex plane, such as stereographic projection to a sphere. The article concludes with an outlook for further research.Comment: 37 pages, 12 (mostly color) figure

    Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation

    Full text link
    The fully nonlinear response of a many-level tunneling system to a strong alternating field of high frequency ω\omega is studied in terms of the Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent tunneling current I(t)I(t) is calculated exactly and its resonance structure is elucidated. In particular, it is shown that under certain reasonable conditions on the physical parameters, the Fourier component InI_{n} is sharply peaked at n=ΔEωn=\frac {\Delta E} {\hbar \omega}, where ΔE\Delta E is the spacing between two levels. This frequency multiplication results from the highly nonlinear process of nn photon absorption (or emission) by the tunneling system. It is also conjectured that this effect (which so far is studied mainly in the context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from [email protected], submitted to Phys.Rev.

    A Psychological Galilean Principle for Price Movements: Fundamental Framework for Technical Analysis

    No full text

    The Traditional Approach to Finance

    No full text

    Catching Animal Spirits: Using Complexity Theory to Detect Speculative Moments of the Markets

    No full text

    Financial Markets as Interacting Individuals: Price Formation from Models of Complexity

    No full text

    Social Framing Creating Bull Markets of the Past: Growth Theory of Financial Markets

    No full text
    corecore