3 research outputs found

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review

    Black Holes in Bulk Viscous Cosmology

    Full text link
    We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Schwarzschild black hole and show that black holes accreting viscous phantom energy will lose mass rapidly compared to the non-viscous case. When matter is incorporated along with the phantom energy, the black holes meet with the same fate as bulk viscous forces dominate matter accretion. If the phantom energy has large bulk viscosity, then the mass of the black hole will reduce faster than in the small viscosity case.Comment: 20 pages, 3 figures, accepted for publication in Int. J. Theor. Phy
    corecore