187 research outputs found
Self-consistent quantum effects in the quark meson coupling model
We derive the equation of state of nuclear matter including vacuum
polarization effects arising from the nucleons and the sigma mesons in the
quark-meson coupling model which incorporates explicitly quark degrees of
freedom with quark coupled to the scalar and vector mesons. This leads to a
softer equation of state for nuclear matter giving a lower value of
incompressibility than would be reached without quantum effects. The {\it
in-medium} nucleon and sigma meson masses are also calculated in a
self-consistent manner.Comment: 10 pages, latex, 5 figure
Supergravity with cosmological constant and the AdS group
It is shown that the supersymmetric extension of the Stelle-West formalism
permits the construction of an action for -dimensional N=1 supergravity
with cosmological constant genuinely invariant under the Since the
action is invariant under the supersymmetric extension of the group, the
supersymmetry algebra closes off shell without the need for auxiliary fields.
The limit case , i.e. -dimensional N=1 supergravity invariant
under the Poincar\'{e} supergroup is also discussed.Comment: 10 page
Dual embedding of the Lorentz-violating electrodinamics and Batalin-Vilkovisky quantization
Modifications of the electromagnetic Maxwell Lagrangian in four dimensions
have been considered by some authors. One may include an explicit massive term
(Proca) and a topological but not Lorentz-invariant term within certain
observational limits.
We find the dual-corresponding gauge invariant version of this theory by
using the recently suggested gauge embedding method. We enforce this
dualisation procedure by showing that, in many cases, this is actually a
constructive method to find a sort of parent action, which manifestly
establishes duality. We also use the gauge invariant version of this theory to
formulate a Batalin-Vilkovisky quantization and present a detailed discussion
on the excitation spectrum.Comment: 8 page
Euclidean wormholes with Phantom field and Phantom field accompanied by perfect fluid
We study the classical Euclidean wormhole solutions for the gravitational
systems with minimally coupled pure Phantom field and minimally coupled Phantom
field accompanied by perfect fluid. It is shown that such solutions do exist
and then the general forms of the Phantom field potential are obtained for
which there are classical Euclidean wormhole solutions.Comment: 15 pages, major revision with perfect flui
A Step Beyond the Bounce: Bubble Dynamics in Quantum Phase Transitions
We study the dynamical evolution of a phase interface or bubble in the
context of a \lambda \phi^4 + g \phi^6 scalar quantum field theory. We use a
self-consistent mean-field approximation derived from a 2PI effective action to
construct an initial value problem for the expectation value of the quantum
field and two-point function. We solve the equations of motion numerically in
(1+1)-dimensions and compare the results to the purely classical evolution. We
find that the quantum fluctuations dress the classical profile, affecting both
the early time expansion of the bubble and the behavior upon collision with a
neighboring interface.Comment: 12 pages, multiple figure
Moduli and (un)attractor black hole thermodynamics
We investigate four-dimensional spherically symmetric black hole solutions in
gravity theories with massless, neutral scalars non-minimally coupled to gauge
fields. In the non-extremal case, we explicitly show that, under the variation
of the moduli, the scalar charges appear in the first law of black hole
thermodynamics. In the extremal limit, the near horizon geometry is
and the entropy does not depend on the values of moduli at
infinity. We discuss the attractor behaviour by using Sen's entropy function
formalism as well as the effective potential approach and their relation with
the results previously obtained through special geometry method. We also argue
that the attractor mechanism is at the basis of the matching between the
microscopic and macroscopic entropies for the extremal non-BPS Kaluza-Klein
black hole.Comment: 36 pages, no figures, V2: minor changes, misprints corrected,
expanded references; V3: sections 4.3 and 4.5 added; V4: minor changes,
matches the published versio
Negative Energy Density in Calabi-Yau Compactifications
We show that a large class of supersymmetric compactifications, including all
simply connected Calabi-Yau and G_2 manifolds, have classical configurations
with negative energy density as seen from four dimensions. In fact, the energy
density can be arbitrarily negative -- it is unbounded from below.
Nevertheless, positive energy theorems show that the total ADM energy remains
positive. Physical consequences of the negative energy density include new
thermal instabilities, and possible violations of cosmic censorship.Comment: 25 pages, v2: few clarifying comments and reference adde
Negative Energy in String Theory and Cosmic Censorship Violation
We find asymptotically anti de Sitter solutions in N=8 supergravity which
have negative total energy. This is possible since the boundary conditions
required for the positive energy theorem are stronger than those required for
finite mass (and allowed by string theory). But stability of the anti de Sitter
vacuum is still ensured by the positivity of a modified energy, which includes
an extra surface term. Some of the negative energy solutions describe classical
evolution of nonsingular initial data to naked singularities. Since there is an
open set of such solutions, cosmic censorship is violated generically in
supergravity. Using the dual field theory description, we argue that these
naked singularities will be resolved in the full string theory.Comment: 23 pages, 2 figures, v2: argument for forming naked singularities
clarified, references adde
The Fall of Stringy de Sitter
Kachru, Kallosh, Linde, & Trivedi recently constructed a four-dimensional de
Sitter compactification of IIB string theory, which they showed to be
metastable in agreement with general arguments about de Sitter spacetimes in
quantum gravity. In this paper, we describe how discrete flux choices lead to a
closely-spaced set of vacua and explore various decay channels. We find that in
many situations NS5-brane meditated decays which exchange NSNS 3-form flux for
D3-branes are comparatively very fast.Comment: 35 pp (11 pp appendices), 5 figures, v3. fixed minor typo
BF models, Duality and Bosonization on higher genus surfaces
The generating functional of two dimensional field theories coupled to
fermionic fields and conserved currents is computed in the general case when
the base manifold is a genus g compact Riemann surface. The lagrangian density
is written in terms of a globally defined 1-form and a
multi-valued scalar field . Consistency conditions on the periods of
have to be imposed. It is shown that there exist a non-trivial dependence of
the generating functional on the topological restrictions imposed to . In
particular if the periods of the field are constrained to take values , with any integer, then the partition function is independent of the
chosen spin structure and may be written as a sum over all the spin structures
associated to the fermions even when one started with a fixed spin structure.
These results are then applied to the functional bosonization of fermionic
fields on higher genus surfaces. A bosonized form of the partition function
which takes care of the chosen spin structure is obtainedComment: 17 page
- âŠ