18 research outputs found

    Characterization of optical properties and surface roughness profiles: The Casimir force between real materials

    Get PDF
    The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.}Comment: 33 pages, 14 figures, to appear in Springer Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Incidental findings on coronary computed tomography in women with selected reproductive disorders

    Get PDF
    OBJECTIVE: To determine the prevalence of incidental findings (IFs) on coronary computed tomography (CCT) in women aged 45–55 years and previously diagnosed with reproductive disorders such as polycystic ovary syndrome (PCOS), premature ovarian insufficiency (POI) or preeclampsia (PE). METHODS: A total of 486 middle-aged women with PCOS (n = 101), POI (n = 97) or a history of PE (n = 288) underwent a CCT as part of a prior prospective study. IFs were categorized by their significance (minor, moderate and major). Follow-up information was collected from patients’ records. To investigate the impact of different field of views (FOVs), a subset of scans was analyzed in full FOV and small FOV. RESULTS: In 96/486 (19.8%) women, one or more IFs were detected, of which 54/486 (11.1%) were classified as moderate/major and 48/486 (9.9%) required follow-up. A moderate/major IF was detected in 16/101 (15.9%) women with PCOS, 13/97 (13.4%) women with POI and 25/288 (8.7%) women with a history of PE. In 78 women with an IF detected in the full FOV, the IF was still visible in 60 (76.9%) women in the small FOV. In the full FOV, 46 women required follow-up, but using the small FOV this was reduced to 30 women. CONCLUSION: Using CCT as a cardiovascular disease screening tool in women with selected reproductive disorders increases the probability of detecting IFs that can cause anxiety and may generate extra costs, but can also reveal clinically relevant findings. Using a small FOV centered around the heart resulted in a lower prevalence of IFs and required less follow-up

    Surface Roughness and Material Optical Properties Influence on Casimir/van der Waals and Capillary Surface Forces

    No full text
    Theory calculations using the Lifshitz theory and atomic force microscopy force measurements show that Casimir/van der Weals dispersive forces have a strong dependence on material optical properties and surface roughness. At separations below 100 nm the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, knowledge of precise optical properties of metals is very important for accurate force predictions rather than referring to idealized defect free material models. Finally, we compare the Casimir/van der Weals forces to capillary adhesive forces in order to illustrate their significance in stiction problems, which are important for motion analysis of microelectromechanical (MEMS) systems

    Kinetic Roughening and Material Optical Properties Influence on Van der Waals/Casimir Forces

    Get PDF
    Atomic force microscopy measurements and force theory calculations using the Lifshitz theory show that van der Waals/Casimir dispersive forces have a strong dependence on surface roughness and material optical properties. It is found that at separations below 100 nm the roughness effect is manifested through a strong deviation from the normal scaling of the force with separation distance. Moreover, knowledge of precise optical properties of metals is shown to be very important for accurate force predictions rather than referring to idealized defect free material models. Finally, we compare the van der Waals/Casimir forces to capillary adhesive forces in order to illustrate their significance in stiction problems.

    Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics

    Get PDF
    It is shown that a graphene layer on top of a dielectric slab can dramatically influence the ability of this dielectric for radiative heat exchange turning a poor heat emitter/absorber into a good one and vice versa. The effect of graphene is related to thermally excited plasmons. The frequency of these resonances lies in the terahertz region and can be tuned by varying the Fermi level through doping or gating. It makes possible the fast modulation of the heat flux by electrical means, which opens up new possibilities for very fast manipulations with the heat flux. The heat transfer between two dielectrics covered with graphene can be larger than that between best known materials and becomes especially efficient below the room temperature

    Optical Properties and Kinetic Roughening Influence on Dispersive Casimir and van der Waals Forces

    Get PDF
    Casimir and van der Waals dispersive forces between real material surfaces can be strongly influenced by surface roughness and the frequency dependent dielectric functions of the interacting materials. The Lifshitz theory allows calculations of these forces between two flat plates if the frequency dependent dielectric function is known. Even in this case in order to compare different measurements of the Casimir force the accuracy must be higher than the force uncertainty arising as a result of the variation in the measured dielectric functions for a given material. Therefore, when we are dealing with dispersive forces between real materials, precise characterization of the particular interacting samples is critical. For this reason the effects of optical properties and surface roughness on dispersive forces will be first discussed in this review paper. Finally, we will compare research results among various research groups, at relatively large surface separations where roughness plays insignificant role, in order to show the level of consensus that has developed in this field in the recent years

    Optical properties of gold films and the Casimir force

    Get PDF
    Precise optical properties of metals are very important for accurate prediction of the Casimir force acting between two metallic plates. Therefore we measured ellipsometrically the optical responses of Au films in a wide range of wavelengths from 0.14 to 33 µm. The films at various thicknesses were deposited at different conditions on silicon or mica substrates. Considerable variation of the frequency dependent dielectric function from sample to sample was found. Detailed analysis of the dielectric functions was performed to check the Kramers-Kronig consistency, and extract the Drude parameters of the films. It was found that the plasma frequency varies in the range from 6.8 to 8.4 eV. It is suggested that this variation is related with the film density. X-ray reflectivity measurements support qualitatively this conclusion. The Casimir force is evaluated for the dielectric functions corresponding to our samples, and for that typically used in the precise prediction of the force. The force for our films was found to be 5%–14% smaller at a distance of 100 nm between the plates. Noise in the optical data is responsible for the force variation within 1%. It is concluded that prediction of the Casimir force between metals with a precision better than 10% must be based on the material optical response measured from visible to mid-infrared range

    Roughness of Microspheres for Force Measurements

    Get PDF
    We have investigated the morphology and surface roughness of several commercially available microspheres to determine their suitability for force measurements using the atomic forcemicroscope. The roughness varies considerably, depending on sphere size and material, ranging from nearly ideally flat up to micrometer-sized features. Because surface roughness significantly influences the magnitude and accuracy of measurement of surface forces, the results presented here should be helpful for colloid physicists and in particular for those performing force measurements.
    corecore