65 research outputs found
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
Electrodeposition of Co-Ni-MoxOy Powders: Part I. The Influence of Deposition Conditions on Powder Composition and Morphology
The Co-Ni-MoxOy powders were obtained electrochemically at a constant current density from ammonia electrolyte. Ni and Co were anomalously deposited, inducing Mo deposition, which cannot be deposited separately from aqueous solutions. The obtained Co-Ni-MoxOy powders were investigated by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electon microscope (SEM) methods. Based on the obtained experimental results, it was concluded that the particle size of deposited powders is influenced by the chemical composition of the electrolyte and current density imposed. XRD results suggested that obtained powders were of amorphous structure, although a Co3Mo compound can be formed if certain experimental conditions are applied
Surface magnetism in iron, cobalt, and nickel
We have calculated magnetic moments, work functions, and surface energies for several of the most closely packed surfaces of iron, cobalt, and nickel by means of a spin-polarized Greenâs-function technique based on the linear muffin-tin orbitals method within the tight-binding and atomic sphere approximations. We find enhanced spin moments at all the surfaces considered except for Ni fcc(111), where the moment at the surface reverts to its bulk value. This is in close agreement with earlier slab calculations. In addition, we find that the calculated work functions and surface energies agree with experimental values to within 10%, which may be considered most satisfactory in view of the computational efficiency of the Greenâs function technique. Exchange and correlation have been treated wihtin the local spin-density approximation and we have considered three different parametrizations of the original many-body data. We find that the calculated work functions depend as much on the choice of this parametrization as on the effect of spin polarization
- âŠ