38 research outputs found

    Discrete molecular dynamics simulations of peptide aggregation

    Get PDF
    We study the aggregation of peptides using the discrete molecular dynamics simulations. At temperatures above the alpha-helix melting temperature of a single peptide, the model peptides aggregate into a multi-layer parallel beta-sheet structure. This structure has an inter-strand distance of 0.48 nm and an inter-sheet distance of 1.0 nm, which agree with experimental observations. In this model, the hydrogen bond interactions give rise to the inter-strand spacing in beta-sheets, while the Go interactions among side chains make beta-strands parallel to each other and allow beta-sheets to pack into layers. The aggregates also contain free edges which may allow for further aggregation of model peptides to form elongated fibrils.Comment: 15 pages, 8 figure

    Large-scale production of cellulose-binding domains : adsorption studies using CBD-FITC conjugates

    Get PDF
    A method for the gram-scale production of cellulose-binding domains (CBD) through the proteolytic digestion of a commercial nzymatic preparation (Celluclast) was developed. The CBD obtained, isolated from Trichoderma reesei cellobiohydrolase I, is highly pure and heavily glycosylated. The purified peptide has a molecular weight of 8.43 kDa, comprising the binding module, a part of the linker, and about 30% glycosidic moiety. Its properties may thus be different from recombinant ones expressed in bacteria. CBDfluorescein isothiocyanate conjugates were used to study the CBD-cellulose interaction. The presence of fluorescent peptides adsorbed on crystalline and amorphous cellulose fibers suggests that amorphous regions have a higher concentration of binding sites. The adsorption is reversible, but desorption is a very slow process.Fundação para a Ciência e a Tecnologia (FCT

    CASA: An Efficient Automated Assignment of Protein Mainchain NMR Data Using an Ordered Tree Search Algorithm

    Full text link
    Rapid analysis of protein structure, interaction, and dynamics requires fast and automated assignments of 3D protein backbone triple-resonance NMR spectra. We introduce a new depth-first ordered tree search method of automated assignment, CASA, which uses hand-edited peak-pick lists of a flexible number of triple resonance experiments. The computer program was tested on 13 artificially simulated peak lists for proteins up to 723 residues, as well as on the experimental data for four proteins. Under reasonable tolerances, it generated assignments that correspond to the ones reported in the literature within a few minutes of CPU time. The program was also tested on the proteins analyzed by other methods, with both simulated and experimental peaklists, and it could generate good assignments in all relevant cases. The robustness was further tested under various situations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43050/1/10858_2005_Article_4079.pd

    Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design

    Full text link
    The knowledge of the three-dimensional (3D) structures and conformational dynamics of proteins and peptides is important for the understanding of biochemical and genetic data derived for these molecules. This understanding can ultimately be of help in drug design. We describe here the role of Nuclear Magnetic Resonance (NMR) spectroscopy in this process for three distinct situations: for small proteins, where relatively simple NMR methods can be used for full 3D structure determination; for larger proteins that require multinuclear multidimensional NMR but for which full 3D structures can still be obtained; and for small peptides that are studied in interaction with macromolecules (receptors) using specialized NMR techniques. A fourth situation, pertaining to large systems where only partial structural information can be obtained from NMR data, is briefly discussed. Molecules of interest to the biomedical field (C5a and stromelysin) are discussed as examples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43356/1/11091_2005_Article_BF02174537.pd
    corecore