3 research outputs found
Chaos and flights in the atom-photon interaction in cavity QED
We study dynamics of the atom-photon interaction in cavity quantum
electrodynamics (QED), considering a cold two-level atom in a single-mode
high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three
coupled degrees of freedom: translational, internal atomic, and the field. The
system proves to have different types of motion including L\'{e}vy flights and
chaotic walkings of an atom in a cavity. It is shown that the translational
motion, related to the atom recoils, is governed by an equation of a parametric
nonlinear pendulum with a frequency modulated by the Rabi oscillations. This
type of dynamics is chaotic with some width of the stochastic layer that is
estimated analytically. The width is fairly small for realistic values of the
control parameters, the normalized detuning and atomic recoil
frequency . It is demonstrated how the atom-photon dynamics with a
given value of depends on the values of and initial
conditions. Two types of L\'{e}vy flights, one corresponding to the ballistic
motion of the atom and another one corresponding to small oscillations in a
potential well, are found. These flights influence statistical properties of
the atom-photon interaction such as distribution of Poincar\'{e} recurrences
and moments of the atom position . The simulation shows different regimes of
motion, from slightly abnormal diffusion with at to a superdiffusion with at that
corresponds to a superballistic motion of the atom with an acceleration. The
obtained results can be used to find new ways to manipulate atoms, to cool and
trap them by adjusting the detuning .Comment: 16 pages, 7 figures. To be published in Phys. Rev.