7 research outputs found
A Diagrammatic Theory of Random Scattering Matrices for Normal-Superconducting Mesoscopic Junctions
The planar-diagrammatic technique of large- random matrices is extended to
evaluate averages over the circular ensemble of unitary matrices. It is then
applied to study transport through a disordered metallic ``grain'', attached
through ideal leads to a normal electrode and to a superconducting electrode.
The latter enforces boundary conditions which coherently couple electrons and
holes at the Fermi energy through Andreev scattering. Consequently, the {\it
leading order} of the conductance is altered, and thus changes much larger than
are observed when, e.g., a weak magnetic field is applied. This is in
agreement with existing theories. The approach developed here is intermediate
between the theory of dirty superconductors (the Usadel equations) and the
random-matrix approach involving transmission eigenvalues (e.g. the DMPK
equation) in the following sense: even though one starts from a scattering
formalism, a quantity analogous to the superconducting order-parameter within
the system naturally arises. The method can be applied to a variety of
mesoscopic normal-superconducting structures, but for brevity we consider here
only the case of a simple disordered N-S junction.Comment: 39 pages + 9 postscript figure
Conductance of Mesoscopic Systems with Magnetic Impurities
We investigate the combined effects of magnetic impurities and applied
magnetic field on the interference contribution to the conductance of
disordered metals. We show that in a metal with weak spin-orbit interaction,
the polarization of impurity spins reduces the rate of electron phase
relaxation, thus enhancing the weak localization correction to conductivity.
Magnetic field also suppresses thermal fluctuations of magnetic impurities,
leading to a recovery of the conductance fluctuations. This recovery occurs
regardless the strength of the spin-orbit interaction. We calculate the
magnitudes of the weak localization correction and of the mesoscopic
conductance fluctuations at an arbitrary level of the spin polarization induced
by a magnetic field. Our analytical results for the ``'' Aharonov-Bohm
conductance oscillations in metal rings can be used to extract spin and
gyromagnetic factor of magnetic impurities from existing experimental data.Comment: 18 pages, 8 figure
Nonequilibrium Josephson effect in short-arm diffusive SNS interferometers
We study non-equilibrium Josephson effect and phase-dependent conductance in
three-terminal diffusive interferometers with short arms. We consider strong
proximity effect and investigate an interplay of dissipative and Josephson
currents co-existing within the same proximity region. In junctions with
transparent interfaces, the suppression of the Josephson current appears at
rather large voltage, , and the current vanishes at
. Josephson current inversion becomes possible in junctions with
resistive interfaces, where the inversion occurs within a finite interval of
the applied voltage. Due to the presence of considerably large and
phase-dependent injection current, the critical current measured in a current
biased junction does not coincide with the maximum Josephson current, and
remains finite when the true Josephson current is suppressed. The voltage
dependence of the conductance shows two pronounced peaks, at the bulk gap
energy, and at the proximity gap energy; the phase oscillation of the
conductance exhibits qualitatively different form at small voltage ,
and at large voltage .Comment: 11 pages, 9 figures, revised version, to be published in Phys. Rev.
Thermoelectric effects in superconducting proximity structures
Attaching a superconductor in good contact with a normal metal makes rise to
a proximity effect where the superconducting correlations leak into the normal
metal. An additional contact close to the first one makes it possible to carry
a supercurrent through the metal. Forcing this supercurrent flow along with an
additional quasiparticle current from one or many normal-metal reservoirs makes
rise to many interesting effects. The supercurrent can be used to tune the
local energy distribution function of the electrons. This mechanism also leads
to finite thermoelectric effects even in the presence of electron-hole
symmetry. Here we review these effects and discuss to which extent the existing
observations of thermoelectric effects in metallic samples can be explained
through the use of the dirty-limit quasiclassical theory.Comment: 14 pages, 10 figures. 374th WE-Heraus seminar: Spin physics of
superconducting heterostructures, Bad Honnef, 200