39 research outputs found
Dynamic charge density correlation function in weakly charged polyampholyte globules
We study solutions of statistically neutral polyampholyte chains containing a
large fraction of neutral monomers. It is known that, even if the quality of
the solvent with respect to the neutral monomers is good, a long chain will
collapse into a globule. For weakly charged chains, the interior of this
globule is semi-dilute. This paper considers mainly theta-solvents, and we
calculate the dynamic charge density correlation function g(k,t) in the
interior of the globules, using the quadratic approximation to the
Martin-Siggia-Rose generating functional. It is convenient to express the
results in terms of dimensionless space and time variables. Let R be the blob
size, and let T be the characteristic time scale at the blob level. Define the
dimensionless wave vector q = R k, and the dimensionless time s = t/T. We find
that for q<1, corresponding to length scales larger than the blob size, the
charge density fluctuations relax according to g(q,s) = q^2(1-s^(1/2)) at short
times s < 1, and according to g(q,s) = q^2 s^(-1/2) at intermediate times 1 < s
0.1, where
entanglements are unimportant.Comment: 12 pages RevTex, 1 figure ps, PACS 61.25.Hq, reason replacement:
Expression for dynamic corr. function g(k,t) in old version was incorrect
(though expression for Fourier transform g(k,w) was correct, so the major
part of the calculation remains.) Also major textual chang
Metallic ferromagnetism without exchange splitting
In the band theory of ferromagnetism there is a relative shift in the
position of majority and minority spin bands due to the self-consistent field
due to opposite spin electrons. In the simplest realization, the Stoner model,
the majority and minority spin bands are rigidly shifted with respect to each
other. Here we consider models at the opposite extreme, where there is no
overall shift of the energy bands. Instead, upon spin polarization one of the
bands broadens relative to the other. Ferromagnetism is driven by the resulting
gain in kinetic energy. A signature of this class of mechanisms is that a
transfer of spectral weight in optical absorption from high to low frequencies
occurs upon spin polarization. We show that such models arise from generalized
tight binding models that include off-diagonal matrix elements of the Coulomb
interaction. For certain parameter ranges it is also found that reentrant
ferromagnetism occurs. We examine properties of these models at zero and finite
temperatures, and discuss their possible relevance to real materials
Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian
We have used Monte Carlo simulation techniques to obtain the magnetic phase
diagram of the double exchange Hamiltonian. We have found that the Berry's
phase of the hopping amplitude has a negligible effect in the value of the
magnetic critical temperature. To avoid finite size problems in our simulations
we have also developed an approximated expression for the double exchange
energy. This allows us to obtain the critical temperature for the ferromagnetic
to paramagnetic transition more accurately. In our calculations we do not
observe any strange behavior in the kinetic energy, chemical potential or
electron density of states near the magnetic critical temperature. Therefore,
we conclude that other effects, not included in the double exchange
Hamiltonian, are needed to understand the metal-insulator transition which
occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure
Effect of diffusive boundaries on surface superconductivity in unconventional superconductors
Boundary conditions for a superconducting order parameter at a diffusive
scattering boundary are derived from microscopic theory. The results indicate
that for all but isotropic gap functions the diffusive boundary almost
completely suppresses surface superconductivity in the Ginzburg-Landau regime.
This indicates that in anisotropic superconductors surface superconductivity
can only be observed for surface normals along high symmetry directions where
atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B
(June 1 1996
Absence of Dipole Transitions in Vortices of Type II Superconductors
The response of a single vortex to a time dependent field is examined
microscopically and an equation of motion for vortex motion at non-zero
frequencies is derived. Of interest are frequencies near ,
where is the bulk energy gap and is the fermi energy. The low
temperature, clean, extreme type II limit and maintaining of equilibrium with
the lattice are assumed. A simplification occurs for large planar mass
anisotropy. Thus the results may be pertinent to materials such as and
high temperature superconductors. The expected dipole transition between core
states is hidden because of the self consistent nature of the vortex potential.
Instead the vortex itself moves and has a resonance at the frequency of the
transition.Comment: 12 pages, no figure
Clustering transitions in vibro-fluidized magnetized granular materials
We study the effects of long range interactions on the phases observed in
cohesive granular materials. At high vibration amplitudes, a gas of magnetized
particles is observed with velocity distributions similar to non-magnetized
particles. Below a transition temperature compact clusters are observed to form
and coexist with single particles. The cluster growth rate is consistent with a
classical nucleation process. However, the temperature of the particles in the
clusters is significantly lower than the surrounding gas, indicating a
breakdown of equipartition. If the system is quenched to low temperatures, a
meta-stable network of connected chains self-assemble due to the anisotropic
nature of magnetic interactions between particles.Comment: 4 pages, 5 figure
Transport on percolation clusters with power-law distributed bond strengths: when do blobs matter?
The simplest transport problem, namely maxflow, is investigated on critical
percolation clusters in two and three dimensions, using a combination of
extremal statistics arguments and exact numerical computations, for power-law
distributed bond strengths of the type .
Assuming that only cutting bonds determine the flow, the maxflow critical
exponent \ve is found to be \ve(\alpha)=(d-1) \nu + 1/(1-\alpha). This
prediction is confirmed with excellent accuracy using large-scale numerical
simulation in two and three dimensions. However, in the region of anomalous
bond capacity distributions () we demonstrate that, due to
cluster-structure fluctuations, it is not the cutting bonds but the blobs that
set the transport properties of the backbone. This ``blob-dominance'' avoids a
cross-over to a regime where structural details, the distribution of the number
of red or cutting bonds, would set the scaling. The restored scaling exponents
however still follow the simplistic red bond estimate. This is argued to be due
to the existence of a hierarchy of so-called minimum cut-configurations, for
which cutting bonds form the lowest level, and whose transport properties scale
all in the same way. We point out the relevance of our findings to other scalar
transport problems (i.e. conductivity).Comment: 9 pages + Postscript figures. Revtex4+psfig. Submitted to PR
Conductance as a Function of the Temperature in the Double Exchange Model
We have used the Kubo formula to calculate the temperature dependence of the
electrical conductance of the double exchange Hamiltonian. We average the
conductance over an statistical ensemble of clusters, which are obtained by
performing Monte Carlo simulations on the classical spin orientation of the
double exchange Hamiltonian. We find that for electron concentrations bigger
than 0.1, the system is metallic at all temperatures. In particular it is not
observed any change in the temperature dependence of the resistivity near the
magnetical critical temperature. The calculated resistivity near is
around ten times smaller than the experimental value. We conclude that the
double exchange model is not able to explain the metal to insulator transition
which experimentally occurs at temperatures near the magnetic critical
temperature.Comment: 6 pages, 5 figures included in the tex
The order of the metal to superconductor transition
We present results from large-scale Monte Carlo simulations on the full
Ginzburg-Landau (GL) model, including fluctuations in the amplitude and the
phase of the matter-field, as well as fluctuations of the non-compact
gauge-field of the theory. {}From this we obtain a precise critical value of
the GL parameter \kct separating a first order metal to superconductor
transition from a second order one, \kct = (0.76\pm 0.04)/\sqrt{2}. This
agrees surprisingly well with earlier analytical results based on a disorder
theory of the superconductor to metal transition, where the value
\kct=0.798/\sqrt{2} was obtained. To achieve this, we have done careful
infinite volume and continuum limit extrapolations. In addition we offer a
novel interpretation of \kct, namely that it is also the value separating
\typeI and \typeII behaviour.<Comment: Minor corrections, present version accepted for publication in PR
Composite Spin Waves, Quasi-Particles and Low Temperature resistivity in Double Exchange Systems
We make a quantum description of the electron low temperature properties of
double exchange materials. In these systems there is a strong coupling between
the core spin and the carriers spin. This large coupling makes the low energy
spin waves to be a combination of ion and electron density spin waves. We study
the form and dispersion of these composite spin wave excitations. We also
analyze the spin up and down spectral functions of the temperature dependent
quasi-particles of this system. Finally we obtain that the thermally activated
composite spin waves renormalize the carriers effective mass and this gives
rise to a low temperature resistivity scaling as T ^{5/2}.Comment: 4 pages, REVTE