6 research outputs found

    Adhesion of lymphocytes to hepatic endothelium.

    No full text
    Chronic inflammation occurs when factors that regulate the process of leucocyte recruitment are disrupted, and it is dependent on recruitment, activation, and retention of lymphocytes within tissue microenvironments. The molecular mechanisms that mediate lymphocyte adhesion to vascular endothelial cells have been described by several groups, but the signals involved in the recruitment of lymphocytes via the hepatic circulation have yet to be elucidated fully. This article considers the liver as a model of organ specific lymphocyte recruitment. In this context, the roles of leucocyte and endothelial adhesion molecules and chemokines in lymphocyte recruitment are discussed. The article also reviews the mechanisms that regulate lymphocyte recirculation to the liver under both physiological and pathological conditions and draws parallels with other organs such as the gut and skin

    Differential Induction of Nuclear Factor-κB and Activator Protein-1 Activity after CD40 Ligation Is Associated with Primary Human Hepatocyte Apoptosis or Intrahepatic Endothelial Cell Proliferation

    No full text
    CD40, a tumor necrosis factor receptor superfamily member, is up-regulated on intraheptatic endothelial cells (IHEC) and epithelial cells during inflammatory liver disease, and there is evidence that the functional outcome of CD40 ligation differs between cell types. Ligation of CD40 on cholangiocytes or hepatocytes results in induction of Fas-mediated apoptosis, whereas ligation of IHEC CD40 leads to enhanced chemokine secretion and adhesion molecule expression. We now report that differential activation of two transcription factors, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), in primary human hepatocytes or IHEC, is associated with and may explain, in part, the different responses of these cell types to CD40 ligation. CD40 ligation induced a rise in NF-κB activity in hepatocytes ,which peaked at 2 h and returned to baseline by 24 h; however, IHEC CD40 ligation resulted in a sustained up-regulation of NF-κB (>24 h). In hepatocytes, CD40 ligation led to sustained up-regulation of AP-1 activity >24 h associated with increased protein levels of RelA (p65), c-Jun, and c-Fos, whereas no induction of AP-1 activity was observed in IHECs. Analysis of mitogen-activated protein kinase phosphorylation (phospho-extracellular signal-regulated kinase 1/2 and phospho-c-Jun NH(2)-terminal kinase 1/2) and expression of inhibitor κBα were entirely consistent, and thus confirmed the profiles of NF-κB and AP-1 signaling and the effects of the selective inhibitors assessed using electrophoretic mobility shift assay or Western immunoblotting. CD40 ligation resulted in induction of apoptosis in hepatocytes after 24 h, but on IHECs, CD40 ligation resulted in proliferation. Inhibition of (CD40-mediated) NF-κB activation prevented IHEC proliferation and led to induction of apoptosis. Selective extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase inhibitors reduced levels of apoptosis in (CD40-stimulated) hepatocytes by ∼50%. We conclude that differential activation of these two transcription factors in response to CD40 ligation is associated with differences in cell fate. Transient activation of NF-κB and sustained AP-1 activation is associated with apoptosis in hepatocytes, whereas prolonged NF-κB activation and a lack of AP-1 activation in IHECs result in proliferation

    Angiotensin receptor blockers in the treatment of NASH/NAFLD: Could they be a first-class option?

    No full text
    corecore