2,223 research outputs found
The dependence of the EIT wave velocity on the magnetic field strength
"EIT waves" are a wavelike phenomenon propagating in the corona, which were
initially observed in the extreme ultraviolet (EUV) wavelength by the EUV
Imaging Telescope (EIT). Their nature is still elusive, with the debate between
fast-mode wave model and non-wave model. In order to distinguish between these
models, we investigate the relation between the EIT wave velocity and the local
magnetic field in the corona. It is found that the two parameters show
significant negative correlation in most of the EIT wave fronts, {\it i.e.},
EIT wave propagates more slowly in the regions of stronger magnetic field. Such
a result poses a big challenge to the fast-mode wave model, which would predict
a strong positive correlation between the two parameters. However, it is
demonstrated that such a result can be explained by the fieldline stretching
model, \emph{i.e.,} that "EIT waves" are apparently-propagating brightenings,
which are generated by successive stretching of closed magnetic field lines
pushed by the erupting flux rope during coronal mass ejections (CMEs).Comment: 11 pages, 8 figures, accepted for publication in Solar Phy
Causality bounds for neutron-proton scattering
We consider the constraints of causality and unitarity for the low-energy
interactions of protons and neutrons. We derive a general theorem that
non-vanishing partial-wave mixing cannot be reproduced with zero-range
interactions without violating causality or unitarity. We define and calculate
interaction length scales which we call the causal range and the Cauchy-Schwarz
range for all spin channels up to J = 3. For some channels we find that these
length scales are as large as 5 fm. We investigate the origin of these large
lengths and discuss their significance for the choice of momentum cutoff scales
in effective field theory and universality in many-body Fermi systems.Comment: 36 pages, 10 figures, 7 tables, version to appear in Eur. Phys. J.
Two Nucleons on a Lattice
The two-nucleon sector is near an infrared fixed point of QCD and as a result
the S-wave scattering lengths are unnaturally large compared to the effective
ranges and shape parameters. It is usually assumed that a lattice QCD
simulation of the two-nucleon sector will require a lattice that is much larger
than the scattering lengths in order to extract quantitative information. In
this paper we point out that this does not have to be the case: lattice QCD
simulations on much smaller lattices will produce rigorous results for nuclear
physics.Comment: 13 pages, 6 figure
Stomach One-Point Cancer: One Case Report and Literature Review
Gastric cancer is one of the most common cancers and one of themost frequent causes of cancer deaths worldwide. Early detection andaccurate preoperative staging of gastric cancer is essential for planning optimal therapy such as endoscopic mucosal resection or gastric resection and offers the best prognosis. With advanced technology in diagnostic instruments and the mass screening, early gastric cancer has been detected easier. One-point cancer of gastric is a special type of early gastric cancer[1]. Diagnosis of one-point cancer of gastric is important for both the immediate treatment and the prognosis. There is still no consensus on the operation extent and postoperative treatment for patients with one-point cancer of gastric. Learned from previous reports[2-5], we know that existed in the superfi cial layer of the gastric mucosa and the superfi cial ulcer is one of the important characteristics of one point cancer of gastric. Herein, we report a case of one point cancer of gastric with the appearance of a deep infi ltrating ulcer. To the best of our knowledge, no such type of one point cancer of gastric has been reported
Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order
We study the four channels associated with neutrino-deuteron breakup
reactions at next-to-next to leading order in effective field theory. We find
that the total cross-section is indeed converging for neutrino energies up to
20 MeV, and thus our calculations can provide constraints on theoretical
uncertainties for the Sudbury Neutrino Observatory. We stress the importance of
a direct experimental measurement to high precision in at least one channel, in
order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps
Tree-based Coarsening and Partitioning of Complex Networks
Many applications produce massive complex networks whose analysis would
benefit from parallel processing. Parallel algorithms, in turn, often require a
suitable network partition. For solving optimization tasks such as graph
partitioning on large networks, multilevel methods are preferred in practice.
Yet, complex networks pose challenges to established multilevel algorithms, in
particular to their coarsening phase.
One way to specify a (recursive) coarsening of a graph is to rate its edges
and then contract the edges as prioritized by the rating. In this paper we (i)
define weights for the edges of a network that express the edges' importance
for connectivity, (ii) compute a minimum weight spanning tree with
respect to these weights, and (iii) rate the network edges based on the
conductance values of 's fundamental cuts. To this end, we also (iv)
develop the first optimal linear-time algorithm to compute the conductance
values of \emph{all} fundamental cuts of a given spanning tree. We integrate
the new edge rating into a leading multilevel graph partitioner and equip the
latter with a new greedy postprocessing for optimizing the maximum
communication volume (MCV). Experiments on bipartitioning frequently used
benchmark networks show that the postprocessing already reduces MCV by 11.3%.
Our new edge rating further reduces MCV by 10.3% compared to the previously
best rating with the postprocessing in place for both ratings. In total, with a
modest increase in running time, our new approach reduces the MCV of complex
network partitions by 20.4%
- …