18 research outputs found
Recommended from our members
Chemical and ceramic methods toward safe storage of actinides using monazite. 1998 annual progress report
'The use of ceramic monazite, (La,Ce)PO{sub 4}, for sequestering actinides, especially plutonium, and some other radioactive waste elements (rare earths e.g.) and thus isolating them from the environment has been championed by Lynn Boatner of ORNL. It may be used alone or, as it is compatible with many other minerals in nature, can be used in composite combinations. Natural monazite, which almost invariably contains Th and U, is often formed in hydrothermal pegmatites and is extremely water resistant--examples are known where the mineral has been washed out of rocks (becoming a placer mineral as on the beach sands of India, Australia, Brazil etc.) then reincorporated into new rocks with new crystal overgrowths and then washed out again--being 2.5--3 billion years old. During this demanding water treatment it has retained Th and U. Where very low levels of water attack have been seen (in more siliceous waters), the Th is tied up as new ThSiO{sub 4} and remains immobile. Lest it be thought that rare-earths are rare or expensive, this is not so. In fact, the less common lanthanides such as gadolinium, samarium, europium, and terbium, are necessarily extracted and much used by, e.g., the electronics industry, leaving La and Ce as not-sufficiently-used by-products. The recent development of large scale use of Nd in Nd-B-Fe magnets has further exaggerated this. Large deposits of the parent mineral bastnaesite are present in the USA and in China. (Mineral monazite itself is not preferred due to its thorium content.) In the last 5 years it has become apparent show that monazite (more specifically La-monazite) is an unrecognized/becoming-interesting ceramic material. PuPO4 itself has the monazite structure; the PO{sub 4} 3-unit strongly stabilizes actinides and rare earths in their trivalent state. Monazite melts without decomposition (in a closed system) at 2,074 C and, being compatible with common ceramic oxides such as alumina, mullite, zirconia and YAG, is useful in oxidatively stable ceramic composites: for example, use is contemplated as an enabling weak interface in oxide-oxide fiber composites (including as a high temperature starch on space shuttle blankets), and possibly as machinable ceramics, friction materials and other. The ceramic behavior of pure and doped monazite has not yet been studied in any detail. The sine-qua-non of ceramic studies and production is the reliable synthesis of reproducible starting powders and precursor chemicals that consistently reproduce the desired ceramic outcome. This has always been a more neglected (underfunded) side of ceramic studies; witness how many years passed before pure reproducible powders of alumina or silicon nitride became available for ceramic studies long after it was apparent that these were useful ceramics which, however, suffered from forming variation and degradation caused by small amounts of impurities.
Interaction of Alumina Inclusions in Steel with Calcium-Containing Materials
Clogging of tundish and submerged entry nozzles (SENs) adversely impacts productivity and quality in the continuous casting of aluminum-killed steels. Clogging results from an accretion layer that develops on the inside surface of the nozzle and restricts steel flow. Current nozzle refractories often react with molten steel to form solid by products that promote clogging. Nozzle materials that are inert with the liquid steel or react with accretions to form liquid reaction products could inhibit or eliminate clogging. Static experiments were conducted to investigate the stability between calcium-based materials and aluminum-killed steel. The results indicate that both calcium titanate and calcium zirconate react with alumina to form calcium aluminates. However, only the reaction between alumina and calcium titanate yielded calcium aluminate chemistries that were molten at steel casting temperatures. Liquid reaction products are preferred since they would be removed from the nozzle by the steel flow, thereby preventing accretion formation and clogging