3 research outputs found

    Structural and superconducting transition in selenium under high pressures

    Get PDF
    First-principles calculations are performed for electronic structures of two high pressure phases of solid selenium, β\beta-Po and bcc. Our calculation reproduces well the pressure-induced phase transition from β\beta-Po to bcc observed in selenium. The calculated transition pressure is 30 GPa lower than the observed one, but the calculated pressure dependence of the lattice parameters agrees fairly well with the observations in a wide range of pressure. We estimate the superconducting transition temperature TcT_{\rm c} of both the β\beta-Po and the bcc phases by calculating the phonon dispersion and the electron-phonon interaction on the basis of density-functional perturbation theory. The calculated TcT_{\rm c} shows a characteristic pressure dependence, i.e. it is rather pressure independent in the β\beta-Po phase, shows a discontinuous jump at the transition from β\beta-Po to bcc, and then decreases rapidly with increasing pressure in the bcc phase.Comment: 8 pages, 11 figure

    First Principles Calculations of Fe on GaAs (100)

    Full text link
    We have calculated from first principles the electronic structure of 0.5 monolayer upto 5 monolayer thick Fe layers on top of a GaAs (100) surface. We find the Fe magnetic moment to be determined by the Fe-As distance. As segregates to the top of the Fe film, whereas Ga most likely is found within the Fe film. Moreover, we find an asymmetric in-plane contraction of our unit-cell along with an expansion perpendicular to the surface. We predict the number of Fe 3d-holes to increase with increasing Fe thickness on pp-doped GaAs.Comment: 9 pages, 14 figures, submitted to PR

    Analysis of the electronic structure of ultrathin NiO/Ag(100) films

    No full text
    Thin films of nickel oxide on a silver substrate have been extensively studied both experimentally and theoretically. In this paper we present band structure calculations of one, two, three and five layer NiO/Ag(100) systems using a GGA+U density functional method and study the approach of the system towards the bulk situation. We find that the interfacial layer is metallised and that even for a five-layer system, the substrate still affects the properties of the outermost and central layers, suggesting that these layers have not yet reached convergence towards bulk properties. This may affect some of the more sensitive properties of the system.
    corecore